{"title":"不同齿形修改对正齿轮静态和动态传动误差的影响","authors":"","doi":"10.1016/j.mechmachtheory.2024.105752","DOIUrl":null,"url":null,"abstract":"<div><p>Profile modifications are a common practice to mitigate torsional dynamics and enhance mechanical efficiency in geared systems. Therefore, it is necessary to develop analytical tools that accurately predict the effect of such modifications on mesh stiffness and dynamic behavior of gear trains under both design and off-design conditions. This paper presents a novel analytical mesh stiffness model for spur gears that embodies conventional compliance phenomena with the effects of profile modifications and the enlargement of the line of action under load. The model accuracy is verified by comparing the results with FEM simulations. Subsequently, a dynamic model for spur gears incorporating time-varying backlash introduced by the modification is presented and validated using experimental data available in literature. Moreover, both the static and dynamic models are applied to conduct a sensitivity analysis of various profile modifications, aiming to capture the effects of intentional and unintentional deviations from the ideal involute profile. Notably, this type of analysis highlights the effects that modifications have on the harmonics associated with gear mesh stiffness and on the dynamic behavior of the system under varying loads. This exploration establishes the foundation for microgeometric optimizations of these types of system.</p></div>","PeriodicalId":49845,"journal":{"name":"Mechanism and Machine Theory","volume":null,"pages":null},"PeriodicalIF":4.5000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The effect of different profile modifications on the static and dynamic transmission error of spur gears\",\"authors\":\"\",\"doi\":\"10.1016/j.mechmachtheory.2024.105752\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Profile modifications are a common practice to mitigate torsional dynamics and enhance mechanical efficiency in geared systems. Therefore, it is necessary to develop analytical tools that accurately predict the effect of such modifications on mesh stiffness and dynamic behavior of gear trains under both design and off-design conditions. This paper presents a novel analytical mesh stiffness model for spur gears that embodies conventional compliance phenomena with the effects of profile modifications and the enlargement of the line of action under load. The model accuracy is verified by comparing the results with FEM simulations. Subsequently, a dynamic model for spur gears incorporating time-varying backlash introduced by the modification is presented and validated using experimental data available in literature. Moreover, both the static and dynamic models are applied to conduct a sensitivity analysis of various profile modifications, aiming to capture the effects of intentional and unintentional deviations from the ideal involute profile. Notably, this type of analysis highlights the effects that modifications have on the harmonics associated with gear mesh stiffness and on the dynamic behavior of the system under varying loads. This exploration establishes the foundation for microgeometric optimizations of these types of system.</p></div>\",\"PeriodicalId\":49845,\"journal\":{\"name\":\"Mechanism and Machine Theory\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2024-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mechanism and Machine Theory\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0094114X24001794\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanism and Machine Theory","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0094114X24001794","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
The effect of different profile modifications on the static and dynamic transmission error of spur gears
Profile modifications are a common practice to mitigate torsional dynamics and enhance mechanical efficiency in geared systems. Therefore, it is necessary to develop analytical tools that accurately predict the effect of such modifications on mesh stiffness and dynamic behavior of gear trains under both design and off-design conditions. This paper presents a novel analytical mesh stiffness model for spur gears that embodies conventional compliance phenomena with the effects of profile modifications and the enlargement of the line of action under load. The model accuracy is verified by comparing the results with FEM simulations. Subsequently, a dynamic model for spur gears incorporating time-varying backlash introduced by the modification is presented and validated using experimental data available in literature. Moreover, both the static and dynamic models are applied to conduct a sensitivity analysis of various profile modifications, aiming to capture the effects of intentional and unintentional deviations from the ideal involute profile. Notably, this type of analysis highlights the effects that modifications have on the harmonics associated with gear mesh stiffness and on the dynamic behavior of the system under varying loads. This exploration establishes the foundation for microgeometric optimizations of these types of system.
期刊介绍:
Mechanism and Machine Theory provides a medium of communication between engineers and scientists engaged in research and development within the fields of knowledge embraced by IFToMM, the International Federation for the Promotion of Mechanism and Machine Science, therefore affiliated with IFToMM as its official research journal.
The main topics are:
Design Theory and Methodology;
Haptics and Human-Machine-Interfaces;
Robotics, Mechatronics and Micro-Machines;
Mechanisms, Mechanical Transmissions and Machines;
Kinematics, Dynamics, and Control of Mechanical Systems;
Applications to Bioengineering and Molecular Chemistry