Kevon Kadiwala, Luize Dipane, Eriks Dipans, Arturs Bundulis, Martins Zubkins, Andrejs Ogurcovs, Jevgenijs Gabrusenoks, Dmitry Bocharov, Edgars Butanovs, Boris Polyakov
{"title":"磁控溅射 Re 和 ReOx 生成的 ReSe2 薄膜的合成与研究","authors":"Kevon Kadiwala, Luize Dipane, Eriks Dipans, Arturs Bundulis, Martins Zubkins, Andrejs Ogurcovs, Jevgenijs Gabrusenoks, Dmitry Bocharov, Edgars Butanovs, Boris Polyakov","doi":"10.3390/cryst14080690","DOIUrl":null,"url":null,"abstract":"The promise of two-dimensional (2D) rhenium diselenide (ReSe2) in electronics and optoelectronics has sparked considerable interest in this material. However, achieving the growth of high-quality ReSe2 thin films on a wafer scale remains a significant challenge. In this study, we adopted a two-step method to produce ReSe2 thin films by combining magnetron sputtering of Re and ReOx onto flat substrates with subsequent selenization via atmospheric pressure chemical vapor transport (CVT). After analyzing the produced films using X-ray diffraction to identify the crystalline phase in formed thin film and scanning electron microscopy (SEM) to examine surface morphology, it was determined that the suitable temperature range for the 15 min selenization process with CVT is 650 °C–750 °C. Further investigation of these optimally produced ReSe2 thin films included atomic force microscopy (AFM), X-ray photoelectron spectroscopy, and Raman spectroscopy. The bulk electrical analysis of these films and AFM and SEM surface morphology revealed a strong reliance on the type of precursor material used for their synthesis, whereas optical measurements indicated a potential for the films in non-linear optics applications, irrespective of the precursor or temperature used. This study not only provides a new pathway for the growth of ReSe2 films but also sheds light on the synthesis approaches of other 2D transition metal dichalcogenide materials.","PeriodicalId":10855,"journal":{"name":"Crystals","volume":"36 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synthesis and Investigation of ReSe2 Thin Films Obtained from Magnetron Sputtered Re and ReOx\",\"authors\":\"Kevon Kadiwala, Luize Dipane, Eriks Dipans, Arturs Bundulis, Martins Zubkins, Andrejs Ogurcovs, Jevgenijs Gabrusenoks, Dmitry Bocharov, Edgars Butanovs, Boris Polyakov\",\"doi\":\"10.3390/cryst14080690\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The promise of two-dimensional (2D) rhenium diselenide (ReSe2) in electronics and optoelectronics has sparked considerable interest in this material. However, achieving the growth of high-quality ReSe2 thin films on a wafer scale remains a significant challenge. In this study, we adopted a two-step method to produce ReSe2 thin films by combining magnetron sputtering of Re and ReOx onto flat substrates with subsequent selenization via atmospheric pressure chemical vapor transport (CVT). After analyzing the produced films using X-ray diffraction to identify the crystalline phase in formed thin film and scanning electron microscopy (SEM) to examine surface morphology, it was determined that the suitable temperature range for the 15 min selenization process with CVT is 650 °C–750 °C. Further investigation of these optimally produced ReSe2 thin films included atomic force microscopy (AFM), X-ray photoelectron spectroscopy, and Raman spectroscopy. The bulk electrical analysis of these films and AFM and SEM surface morphology revealed a strong reliance on the type of precursor material used for their synthesis, whereas optical measurements indicated a potential for the films in non-linear optics applications, irrespective of the precursor or temperature used. This study not only provides a new pathway for the growth of ReSe2 films but also sheds light on the synthesis approaches of other 2D transition metal dichalcogenide materials.\",\"PeriodicalId\":10855,\"journal\":{\"name\":\"Crystals\",\"volume\":\"36 1\",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-07-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Crystals\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.3390/cryst14080690\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CRYSTALLOGRAPHY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Crystals","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/cryst14080690","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CRYSTALLOGRAPHY","Score":null,"Total":0}
Synthesis and Investigation of ReSe2 Thin Films Obtained from Magnetron Sputtered Re and ReOx
The promise of two-dimensional (2D) rhenium diselenide (ReSe2) in electronics and optoelectronics has sparked considerable interest in this material. However, achieving the growth of high-quality ReSe2 thin films on a wafer scale remains a significant challenge. In this study, we adopted a two-step method to produce ReSe2 thin films by combining magnetron sputtering of Re and ReOx onto flat substrates with subsequent selenization via atmospheric pressure chemical vapor transport (CVT). After analyzing the produced films using X-ray diffraction to identify the crystalline phase in formed thin film and scanning electron microscopy (SEM) to examine surface morphology, it was determined that the suitable temperature range for the 15 min selenization process with CVT is 650 °C–750 °C. Further investigation of these optimally produced ReSe2 thin films included atomic force microscopy (AFM), X-ray photoelectron spectroscopy, and Raman spectroscopy. The bulk electrical analysis of these films and AFM and SEM surface morphology revealed a strong reliance on the type of precursor material used for their synthesis, whereas optical measurements indicated a potential for the films in non-linear optics applications, irrespective of the precursor or temperature used. This study not only provides a new pathway for the growth of ReSe2 films but also sheds light on the synthesis approaches of other 2D transition metal dichalcogenide materials.
期刊介绍:
Crystals (ISSN 2073-4352) is an open access journal that covers all aspects of crystalline material research. Crystals can act as a reference, and as a publication resource, to the community. It publishes reviews, regular research articles, and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on article length. Full experimental details must be provided to enable the results to be reproduced. Crystals provides a forum for the advancement of our understanding of the nucleation, growth, processing, and characterization of crystalline materials. Their mechanical, chemical, electronic, magnetic, and optical properties, and their diverse applications, are all considered to be of importance.