三阴性乳腺癌免疫疗法和靶向疗法的最新进展。

IF 2.2 4区 医学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY Current pharmaceutical biotechnology Pub Date : 2024-07-31 DOI:10.2174/0113892010303244240718075729
Harshada Shewale, Abhishek Kanugo
{"title":"三阴性乳腺癌免疫疗法和靶向疗法的最新进展。","authors":"Harshada Shewale, Abhishek Kanugo","doi":"10.2174/0113892010303244240718075729","DOIUrl":null,"url":null,"abstract":"<p><p>The truancy of representation of the estrogen, progesterone, and human epidermal growth factor receptors occurs during TNBC. TNBC is recognized for the upper reappearance and has a poorer diagnosis compared with rest breast cancer (BC) types. Presently, as such, no targeted therapy is approved for TNBC and treatment options are subjected to chemotherapy and surgery, which have high mortality rates. Hence, the current article focuses on the scenario of TNBC vital pathways and discusses the latest advances in TNBC treatment, including immune checkpoint inhibitors (ICIs), PARP suppressors, and cancer vaccines. Immunotherapy and ICIs, like PD 1 and PD L1 suppressors, displayed potential in clinical trials (CTs). These suppressors obstruct the mechanisms which allow tumor cells to evade the system thereby boosting the body's defense against TNBC. Immunotherapy, either alone or combined with chemotherapy has demonstrated patient outcomes such as increased survival rates and reduced treatment-related side effects. Additionally, targeted therapy approaches include BRCA/2 mutation poly ribose polymerase inhibitors, Vascular Endothelial Growth Factor Receptor (VEGFR) inhibitors, Epidermal growth factor receptor inhibitors, Fibroblast growth factor inhibitors, Androgen Receptor inhibitors, PIK3/AKT/mTOR pathway inhibitors, Cyclin-dependent kinase (CDK) inhibitors, Notch signaling pathway inhibitors, Signal transducer and activator of transcription 3 (STAT3) signaling pathway inhibitors, Chimeric antigen receptor T (CAR-T) cell therapy, Transforming growth factor (TGF) -β inhibitors, Epigenetic modifications (EPM), Aurora Kinase inhibitors and antibody-drug conjugates. We also highlight ongoing clinical trials and potential future directions for TNBC therapy. Despite the challenges in treating TNBC, recent developments in understanding the molecular and immune characteristics of TNBC have opened up new opportunities for targeted therapies, which hold promise for improving outcomes in this aggressive disease.</p>","PeriodicalId":10881,"journal":{"name":"Current pharmaceutical biotechnology","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Recent Advances in Immunotherapy and Targeted Therapy of Triple Negative Breast Cancer.\",\"authors\":\"Harshada Shewale, Abhishek Kanugo\",\"doi\":\"10.2174/0113892010303244240718075729\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The truancy of representation of the estrogen, progesterone, and human epidermal growth factor receptors occurs during TNBC. TNBC is recognized for the upper reappearance and has a poorer diagnosis compared with rest breast cancer (BC) types. Presently, as such, no targeted therapy is approved for TNBC and treatment options are subjected to chemotherapy and surgery, which have high mortality rates. Hence, the current article focuses on the scenario of TNBC vital pathways and discusses the latest advances in TNBC treatment, including immune checkpoint inhibitors (ICIs), PARP suppressors, and cancer vaccines. Immunotherapy and ICIs, like PD 1 and PD L1 suppressors, displayed potential in clinical trials (CTs). These suppressors obstruct the mechanisms which allow tumor cells to evade the system thereby boosting the body's defense against TNBC. Immunotherapy, either alone or combined with chemotherapy has demonstrated patient outcomes such as increased survival rates and reduced treatment-related side effects. Additionally, targeted therapy approaches include BRCA/2 mutation poly ribose polymerase inhibitors, Vascular Endothelial Growth Factor Receptor (VEGFR) inhibitors, Epidermal growth factor receptor inhibitors, Fibroblast growth factor inhibitors, Androgen Receptor inhibitors, PIK3/AKT/mTOR pathway inhibitors, Cyclin-dependent kinase (CDK) inhibitors, Notch signaling pathway inhibitors, Signal transducer and activator of transcription 3 (STAT3) signaling pathway inhibitors, Chimeric antigen receptor T (CAR-T) cell therapy, Transforming growth factor (TGF) -β inhibitors, Epigenetic modifications (EPM), Aurora Kinase inhibitors and antibody-drug conjugates. We also highlight ongoing clinical trials and potential future directions for TNBC therapy. Despite the challenges in treating TNBC, recent developments in understanding the molecular and immune characteristics of TNBC have opened up new opportunities for targeted therapies, which hold promise for improving outcomes in this aggressive disease.</p>\",\"PeriodicalId\":10881,\"journal\":{\"name\":\"Current pharmaceutical biotechnology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current pharmaceutical biotechnology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2174/0113892010303244240718075729\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current pharmaceutical biotechnology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0113892010303244240718075729","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

TNBC 会出现雌激素、孕激素和人类表皮生长因子受体的缺失。与其他乳腺癌(BC)类型相比,TNBC 的复发率较高,诊断率较低。目前,TNBC 的靶向治疗尚未获得批准,治疗方法主要是化疗和手术,而化疗和手术的死亡率较高。因此,本文将重点介绍 TNBC 重要途径的情况,并讨论 TNBC 治疗的最新进展,包括免疫检查点抑制剂(ICIs)、PARP 抑制剂和癌症疫苗。免疫疗法和 ICIs,如 PD 1 和 PD L1 抑制剂,在临床试验(CT)中显示出潜力。这些抑制剂阻碍了肿瘤细胞逃避免疫系统的机制,从而增强了机体对 TNBC 的防御能力。免疫疗法,无论是单独使用还是与化疗联合使用,都能提高患者的生存率并减少与治疗相关的副作用。此外,靶向治疗方法还包括 BRCA/2 突变聚核糖聚合酶抑制剂、血管内皮生长因子受体(VEGFR)抑制剂、表皮生长因子受体抑制剂、成纤维细胞生长因子抑制剂、雄激素受体抑制剂、PIK3/AKT/mTOR 通路抑制剂、细胞周期蛋白依赖性激酶 (CDK) 抑制剂、Notch 信号通路抑制剂、信号转导和激活转录 3 (STAT3) 信号通路抑制剂、嵌合抗原受体 T (CAR-T) 细胞疗法、转化生长因子 (TGF) -β 抑制剂、表观遗传修饰 (EPM)、极光激酶抑制剂和抗体药物共轭物。我们还重点介绍了正在进行的临床试验和 TNBC 治疗的未来潜在方向。尽管 TNBC 的治疗面临挑战,但最近在了解 TNBC 的分子和免疫特征方面取得的进展为靶向疗法开辟了新的机会,有望改善这种侵袭性疾病的治疗效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Recent Advances in Immunotherapy and Targeted Therapy of Triple Negative Breast Cancer.

The truancy of representation of the estrogen, progesterone, and human epidermal growth factor receptors occurs during TNBC. TNBC is recognized for the upper reappearance and has a poorer diagnosis compared with rest breast cancer (BC) types. Presently, as such, no targeted therapy is approved for TNBC and treatment options are subjected to chemotherapy and surgery, which have high mortality rates. Hence, the current article focuses on the scenario of TNBC vital pathways and discusses the latest advances in TNBC treatment, including immune checkpoint inhibitors (ICIs), PARP suppressors, and cancer vaccines. Immunotherapy and ICIs, like PD 1 and PD L1 suppressors, displayed potential in clinical trials (CTs). These suppressors obstruct the mechanisms which allow tumor cells to evade the system thereby boosting the body's defense against TNBC. Immunotherapy, either alone or combined with chemotherapy has demonstrated patient outcomes such as increased survival rates and reduced treatment-related side effects. Additionally, targeted therapy approaches include BRCA/2 mutation poly ribose polymerase inhibitors, Vascular Endothelial Growth Factor Receptor (VEGFR) inhibitors, Epidermal growth factor receptor inhibitors, Fibroblast growth factor inhibitors, Androgen Receptor inhibitors, PIK3/AKT/mTOR pathway inhibitors, Cyclin-dependent kinase (CDK) inhibitors, Notch signaling pathway inhibitors, Signal transducer and activator of transcription 3 (STAT3) signaling pathway inhibitors, Chimeric antigen receptor T (CAR-T) cell therapy, Transforming growth factor (TGF) -β inhibitors, Epigenetic modifications (EPM), Aurora Kinase inhibitors and antibody-drug conjugates. We also highlight ongoing clinical trials and potential future directions for TNBC therapy. Despite the challenges in treating TNBC, recent developments in understanding the molecular and immune characteristics of TNBC have opened up new opportunities for targeted therapies, which hold promise for improving outcomes in this aggressive disease.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Current pharmaceutical biotechnology
Current pharmaceutical biotechnology 医学-生化与分子生物学
CiteScore
5.60
自引率
3.60%
发文量
203
审稿时长
6 months
期刊介绍: Current Pharmaceutical Biotechnology aims to cover all the latest and outstanding developments in Pharmaceutical Biotechnology. Each issue of the journal includes timely in-depth reviews, original research articles and letters written by leaders in the field, covering a range of current topics in scientific areas of Pharmaceutical Biotechnology. Invited and unsolicited review articles are welcome. The journal encourages contributions describing research at the interface of drug discovery and pharmacological applications, involving in vitro investigations and pre-clinical or clinical studies. Scientific areas within the scope of the journal include pharmaceutical chemistry, biochemistry and genetics, molecular and cellular biology, and polymer and materials sciences as they relate to pharmaceutical science and biotechnology. In addition, the journal also considers comprehensive studies and research advances pertaining food chemistry with pharmaceutical implication. Areas of interest include: DNA/protein engineering and processing Synthetic biotechnology Omics (genomics, proteomics, metabolomics and systems biology) Therapeutic biotechnology (gene therapy, peptide inhibitors, enzymes) Drug delivery and targeting Nanobiotechnology Molecular pharmaceutics and molecular pharmacology Analytical biotechnology (biosensing, advanced technology for detection of bioanalytes) Pharmacokinetics and pharmacodynamics Applied Microbiology Bioinformatics (computational biopharmaceutics and modeling) Environmental biotechnology Regenerative medicine (stem cells, tissue engineering and biomaterials) Translational immunology (cell therapies, antibody engineering, xenotransplantation) Industrial bioprocesses for drug production and development Biosafety Biotech ethics Special Issues devoted to crucial topics, providing the latest comprehensive information on cutting-edge areas of research and technological advances, are welcome. Current Pharmaceutical Biotechnology is an essential journal for academic, clinical, government and pharmaceutical scientists who wish to be kept informed and up-to-date with the latest and most important developments.
期刊最新文献
Dihydroartemisinin Modulates Prostate Cancer Progression by Regulating Multiple Genes via the Transcription Factor NR2F2. Extraction, Isolation, Characterization, and Development of Phospholipids Complex Nanocarrier for Improved Solubility, Antiasthmatic, and Pharmacokinetic Potential of Curcuminoids. A Liquid Band-Aid with Mesenchymal Stem Cell-Derived Exosomes for Wound Healing in Mice. Ampullaviruses: From Extreme Environments to Biotechnological Innovation. Biomarkers and Novel Therapies of Diabetic Neuropathy: An Updated Review.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1