一种基于支化聚合物的制剂,可通过磁共振成像对纤维化疾病进行高效、精确的靶向治疗。

IF 10.5 1区 医学 Q1 CHEMISTRY, MULTIDISCIPLINARY Journal of Controlled Release Pub Date : 2024-08-06 DOI:10.1016/j.jconrel.2024.07.072
{"title":"一种基于支化聚合物的制剂,可通过磁共振成像对纤维化疾病进行高效、精确的靶向治疗。","authors":"","doi":"10.1016/j.jconrel.2024.07.072","DOIUrl":null,"url":null,"abstract":"<div><p>Herein, we synthesized and characterized gadolinium-based hyperbranched polymers, POADGd and PODGd, through RAFT polymerization as magnetic resonance imaging (MRI) contrast agents for detecting fibrosis. POADGd and PODGd contain biocompatible short-chain OEGMA to prolong blood circulation, and they can be decomposed in response to ROS after MRI examination to prevent potential accumulation. The relaxivities of POADGd and PODGd are 9.81 mM<sup>−1</sup> s<sup>−1</sup> and 9.58 mM<sup>−1</sup> s<sup>−1</sup> respectively, which are significantly higher than that of DTPA-Gd, a clinically used agent (3.74 mM<sup>−1</sup> s<sup>−1</sup>). In comparison with PODGd, POADGd can specifically target allysine in fibrosis tissues through its oxyamine groups. Therefore, it displays a sharp spatial resolution and a high signal-to-noise ratio in the liver and lung fibrosis tissue at a field strength of 3.0 T or 7.0 T, and the morphology of these fibrosis tissues is accurately delineated. Our MRI diagnosis results based on POADGd are highly aligned with those from pathological examinations, while MRI diagnosis could avoid invasive biopsy. In addition, POADGd shows excellent biosafety and low toxicity. Therefore, POADGd could be applied to non-invasively and accurately diagnose liver and lung fibrosis diseases.</p></div>","PeriodicalId":15450,"journal":{"name":"Journal of Controlled Release","volume":null,"pages":null},"PeriodicalIF":10.5000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A branched polymer-based agent for efficient and precise targeting of fibrosis diseases by magnetic resonance imaging\",\"authors\":\"\",\"doi\":\"10.1016/j.jconrel.2024.07.072\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Herein, we synthesized and characterized gadolinium-based hyperbranched polymers, POADGd and PODGd, through RAFT polymerization as magnetic resonance imaging (MRI) contrast agents for detecting fibrosis. POADGd and PODGd contain biocompatible short-chain OEGMA to prolong blood circulation, and they can be decomposed in response to ROS after MRI examination to prevent potential accumulation. The relaxivities of POADGd and PODGd are 9.81 mM<sup>−1</sup> s<sup>−1</sup> and 9.58 mM<sup>−1</sup> s<sup>−1</sup> respectively, which are significantly higher than that of DTPA-Gd, a clinically used agent (3.74 mM<sup>−1</sup> s<sup>−1</sup>). In comparison with PODGd, POADGd can specifically target allysine in fibrosis tissues through its oxyamine groups. Therefore, it displays a sharp spatial resolution and a high signal-to-noise ratio in the liver and lung fibrosis tissue at a field strength of 3.0 T or 7.0 T, and the morphology of these fibrosis tissues is accurately delineated. Our MRI diagnosis results based on POADGd are highly aligned with those from pathological examinations, while MRI diagnosis could avoid invasive biopsy. In addition, POADGd shows excellent biosafety and low toxicity. Therefore, POADGd could be applied to non-invasively and accurately diagnose liver and lung fibrosis diseases.</p></div>\",\"PeriodicalId\":15450,\"journal\":{\"name\":\"Journal of Controlled Release\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":10.5000,\"publicationDate\":\"2024-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Controlled Release\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0168365924005303\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Controlled Release","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168365924005303","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在此,我们通过RAFT聚合合成了钆基超支化聚合物POADGd和PODGd,并对其进行了表征,将其用作检测纤维化的磁共振成像(MRI)造影剂。POADGd 和 PODGd 含有生物相容性短链 OEGMA,可延长血液循环,在磁共振成像检查后可在 ROS 作用下分解,防止潜在的积累。POADGd 和 PODGd 的弛豫度分别为 9.81 mM-1 s-1 和 9.58 mM-1 s-1,明显高于临床常用的 DTPA-Gd(3.74 mM-1 s-1)。与 PODGd 相比,POADGd 可通过其氧胺基团特异性地靶向纤维化组织中的烯丙基氨酸。因此,在 3.0 T 或 7.0 T 的磁场强度下,POADGd 在肝脏和肺部纤维化组织中显示出清晰的空间分辨率和较高的信噪比,并能准确地勾勒出这些纤维化组织的形态。我们基于 POADGd 的核磁共振诊断结果与病理检查结果高度一致,而核磁共振诊断可避免侵入性活检。此外,POADGd 还具有良好的生物安全性和低毒性。因此,POADGd 可用于无创、准确地诊断肝脏和肺部纤维化疾病。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A branched polymer-based agent for efficient and precise targeting of fibrosis diseases by magnetic resonance imaging

Herein, we synthesized and characterized gadolinium-based hyperbranched polymers, POADGd and PODGd, through RAFT polymerization as magnetic resonance imaging (MRI) contrast agents for detecting fibrosis. POADGd and PODGd contain biocompatible short-chain OEGMA to prolong blood circulation, and they can be decomposed in response to ROS after MRI examination to prevent potential accumulation. The relaxivities of POADGd and PODGd are 9.81 mM−1 s−1 and 9.58 mM−1 s−1 respectively, which are significantly higher than that of DTPA-Gd, a clinically used agent (3.74 mM−1 s−1). In comparison with PODGd, POADGd can specifically target allysine in fibrosis tissues through its oxyamine groups. Therefore, it displays a sharp spatial resolution and a high signal-to-noise ratio in the liver and lung fibrosis tissue at a field strength of 3.0 T or 7.0 T, and the morphology of these fibrosis tissues is accurately delineated. Our MRI diagnosis results based on POADGd are highly aligned with those from pathological examinations, while MRI diagnosis could avoid invasive biopsy. In addition, POADGd shows excellent biosafety and low toxicity. Therefore, POADGd could be applied to non-invasively and accurately diagnose liver and lung fibrosis diseases.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Controlled Release
Journal of Controlled Release 医学-化学综合
CiteScore
18.50
自引率
5.60%
发文量
700
审稿时长
39 days
期刊介绍: The Journal of Controlled Release (JCR) proudly serves as the Official Journal of the Controlled Release Society and the Japan Society of Drug Delivery System. Dedicated to the broad field of delivery science and technology, JCR publishes high-quality research articles covering drug delivery systems and all facets of formulations. This includes the physicochemical and biological properties of drugs, design and characterization of dosage forms, release mechanisms, in vivo testing, and formulation research and development across pharmaceutical, diagnostic, agricultural, environmental, cosmetic, and food industries. Priority is given to manuscripts that contribute to the fundamental understanding of principles or demonstrate the advantages of novel technologies in terms of safety and efficacy over current clinical standards. JCR strives to be a leading platform for advancements in delivery science and technology.
期刊最新文献
Combination of multivalent DR5 receptor clustering agonists and histone deacetylase inhibitors for treatment of colon cancer. Leveraging machine learning to streamline the development of liposomal drug delivery systems. Controlled release of mesenchymal stem cell-derived nanovesicles through glucose- and reactive oxygen species-responsive hydrogels accelerates diabetic wound healing. Reactive oxygen species-responsive polydopamine-PtCuTe nanoparticle-loaded microneedle system for promoting the healing of infected skin wounds. Phage-liposome nanoconjugates for orthopedic biofilm eradication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1