了解 RIG-I 活化和寡聚化的最新进展。

IF 2.6 4区 综合性期刊 Q2 MULTIDISCIPLINARY SCIENCES Science Progress Pub Date : 2024-07-01 DOI:10.1177/00368504241265182
Justyna Sikorska, Daniel F Wyss
{"title":"了解 RIG-I 活化和寡聚化的最新进展。","authors":"Justyna Sikorska, Daniel F Wyss","doi":"10.1177/00368504241265182","DOIUrl":null,"url":null,"abstract":"<p><p>Insights into mechanisms driving either activation or inhibition of immune response are crucial in understanding the pathology of various diseases. The differentiation of viral from endogenous RNA in the cytoplasm by pattern-recognition receptors, such as retinoic acid-inducible gene I (RIG-I), is one of the essential paths for timely activation of an antiviral immune response through induction of type I interferons (IFN). In this mini-review, we describe the most recent developments centered around RIG-I's structure and mechanism of action. We summarize the paradigm-changing work over the past few years that helped us better understand RIG-I's monomeric and oligomerization states and their role in conveying immune response. We also discuss potential applications of the modulation of the RIG-I pathway in preventing autoimmune diseases or induction of immunity against viral infections. Overall, our review aims to summarize innovative research published in the past few years to help clarify questions that have long persisted around RIG-I.</p>","PeriodicalId":56061,"journal":{"name":"Science Progress","volume":"107 3","pages":"368504241265182"},"PeriodicalIF":2.6000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11297509/pdf/","citationCount":"0","resultStr":"{\"title\":\"Recent developments in understanding RIG-I's activation and oligomerization.\",\"authors\":\"Justyna Sikorska, Daniel F Wyss\",\"doi\":\"10.1177/00368504241265182\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Insights into mechanisms driving either activation or inhibition of immune response are crucial in understanding the pathology of various diseases. The differentiation of viral from endogenous RNA in the cytoplasm by pattern-recognition receptors, such as retinoic acid-inducible gene I (RIG-I), is one of the essential paths for timely activation of an antiviral immune response through induction of type I interferons (IFN). In this mini-review, we describe the most recent developments centered around RIG-I's structure and mechanism of action. We summarize the paradigm-changing work over the past few years that helped us better understand RIG-I's monomeric and oligomerization states and their role in conveying immune response. We also discuss potential applications of the modulation of the RIG-I pathway in preventing autoimmune diseases or induction of immunity against viral infections. Overall, our review aims to summarize innovative research published in the past few years to help clarify questions that have long persisted around RIG-I.</p>\",\"PeriodicalId\":56061,\"journal\":{\"name\":\"Science Progress\",\"volume\":\"107 3\",\"pages\":\"368504241265182\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11297509/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science Progress\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1177/00368504241265182\",\"RegionNum\":4,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Progress","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1177/00368504241265182","RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

了解激活或抑制免疫反应的机制对于理解各种疾病的病理至关重要。视黄酸诱导基因 I(RIG-I)等模式识别受体将细胞质中的病毒与内源性 RNA 区分开来,是通过诱导 I 型干扰素(IFN)及时激活抗病毒免疫反应的重要途径之一。在这篇微型综述中,我们介绍了围绕 RIG-I 结构和作用机制的最新进展。我们总结了过去几年改变研究范式的工作,这些工作帮助我们更好地理解了 RIG-I 的单体和寡聚状态及其在传递免疫反应中的作用。我们还讨论了调节 RIG-I 通路在预防自身免疫性疾病或诱导对病毒感染的免疫力方面的潜在应用。总之,我们的综述旨在总结过去几年发表的创新性研究,帮助澄清长期以来围绕 RIG-I 存在的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Recent developments in understanding RIG-I's activation and oligomerization.

Insights into mechanisms driving either activation or inhibition of immune response are crucial in understanding the pathology of various diseases. The differentiation of viral from endogenous RNA in the cytoplasm by pattern-recognition receptors, such as retinoic acid-inducible gene I (RIG-I), is one of the essential paths for timely activation of an antiviral immune response through induction of type I interferons (IFN). In this mini-review, we describe the most recent developments centered around RIG-I's structure and mechanism of action. We summarize the paradigm-changing work over the past few years that helped us better understand RIG-I's monomeric and oligomerization states and their role in conveying immune response. We also discuss potential applications of the modulation of the RIG-I pathway in preventing autoimmune diseases or induction of immunity against viral infections. Overall, our review aims to summarize innovative research published in the past few years to help clarify questions that have long persisted around RIG-I.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Science Progress
Science Progress Multidisciplinary-Multidisciplinary
CiteScore
3.80
自引率
0.00%
发文量
119
期刊介绍: Science Progress has for over 100 years been a highly regarded review publication in science, technology and medicine. Its objective is to excite the readers'' interest in areas with which they may not be fully familiar but which could facilitate their interest, or even activity, in a cognate field.
期刊最新文献
A voltage mode grounded capacitance multiplier with widely tunable gain for ultra-low cutoff frequency filter. Appropriate dose of tranexamic acid in the topical treatment of anterior epistaxis, 500 mg vs 1000 mg: A double-blind randomized controlled trial. Research status and prospect of flexible optimization design methodology of propeller CNC polishing machines. Sliding mode control with self-adaptive parameters of a 5-DOF hybrid robot. Spoofing attack recognition for GNSS-based train positioning using a BO-LightGBM method.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1