Bai-Jun Li, Ruo-Xuan Bao, Yan-Na Shi, Donald Grierson, Kun-Song Chen
{"title":"叶黄素反应因子:了解肉质果实发育和成熟调控机制的重要关键","authors":"Bai-Jun Li, Ruo-Xuan Bao, Yan-Na Shi, Donald Grierson, Kun-Song Chen","doi":"10.1093/hr/uhae209","DOIUrl":null,"url":null,"abstract":"Auxin response transcription factors (ARFs) form a large gene family, many of whose members operate at the final step of the auxin signaling pathway. ARFs participate directly in many aspects of plant growth and development. Here, we summarize recent advances in understanding the roles of ARFs in regulating aspects of fleshy fruit development and ripening. ARFs play a crucial role in regulating fruit size, color, nutrients, texture, yield, and others properties that ultimately influence the ripening and quality of important crops such as tomato, apple, strawberry, and peach. ARFs impact these processes acting as positive, negative, or bidirectional regulators via phytohormone-dependent or -independent mechanisms. In the phytohormone-dependent pathway, ARFs act as a central hub linking interactions with multiple phytohormones generating diverse effects. The three domains within ARFs, namely the DNA-binding domain, the middle region, and the carboxy-terminal dimerization domain, exhibit distinct yet overlapping functions, contributing to a range of mechanisms mediated by ARFs. These findings not only provide a profound understanding of ARF functions, but also raise new questions. Further exploration can lead to a more comprehensive understanding of the regulatory mechanisms of fleshy fruit development and ripening mediated by ARFs.","PeriodicalId":13179,"journal":{"name":"Horticulture Research","volume":"89 1","pages":""},"PeriodicalIF":8.7000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Auxin response factors: important keys for understanding regulatory mechanisms of fleshy fruit development and ripening\",\"authors\":\"Bai-Jun Li, Ruo-Xuan Bao, Yan-Na Shi, Donald Grierson, Kun-Song Chen\",\"doi\":\"10.1093/hr/uhae209\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Auxin response transcription factors (ARFs) form a large gene family, many of whose members operate at the final step of the auxin signaling pathway. ARFs participate directly in many aspects of plant growth and development. Here, we summarize recent advances in understanding the roles of ARFs in regulating aspects of fleshy fruit development and ripening. ARFs play a crucial role in regulating fruit size, color, nutrients, texture, yield, and others properties that ultimately influence the ripening and quality of important crops such as tomato, apple, strawberry, and peach. ARFs impact these processes acting as positive, negative, or bidirectional regulators via phytohormone-dependent or -independent mechanisms. In the phytohormone-dependent pathway, ARFs act as a central hub linking interactions with multiple phytohormones generating diverse effects. The three domains within ARFs, namely the DNA-binding domain, the middle region, and the carboxy-terminal dimerization domain, exhibit distinct yet overlapping functions, contributing to a range of mechanisms mediated by ARFs. These findings not only provide a profound understanding of ARF functions, but also raise new questions. Further exploration can lead to a more comprehensive understanding of the regulatory mechanisms of fleshy fruit development and ripening mediated by ARFs.\",\"PeriodicalId\":13179,\"journal\":{\"name\":\"Horticulture Research\",\"volume\":\"89 1\",\"pages\":\"\"},\"PeriodicalIF\":8.7000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Horticulture Research\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1093/hr/uhae209\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Horticulture Research","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1093/hr/uhae209","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
Auxin response factors: important keys for understanding regulatory mechanisms of fleshy fruit development and ripening
Auxin response transcription factors (ARFs) form a large gene family, many of whose members operate at the final step of the auxin signaling pathway. ARFs participate directly in many aspects of plant growth and development. Here, we summarize recent advances in understanding the roles of ARFs in regulating aspects of fleshy fruit development and ripening. ARFs play a crucial role in regulating fruit size, color, nutrients, texture, yield, and others properties that ultimately influence the ripening and quality of important crops such as tomato, apple, strawberry, and peach. ARFs impact these processes acting as positive, negative, or bidirectional regulators via phytohormone-dependent or -independent mechanisms. In the phytohormone-dependent pathway, ARFs act as a central hub linking interactions with multiple phytohormones generating diverse effects. The three domains within ARFs, namely the DNA-binding domain, the middle region, and the carboxy-terminal dimerization domain, exhibit distinct yet overlapping functions, contributing to a range of mechanisms mediated by ARFs. These findings not only provide a profound understanding of ARF functions, but also raise new questions. Further exploration can lead to a more comprehensive understanding of the regulatory mechanisms of fleshy fruit development and ripening mediated by ARFs.
期刊介绍:
Horticulture Research, an open access journal affiliated with Nanjing Agricultural University, has achieved the prestigious ranking of number one in the Horticulture category of the Journal Citation Reports ™ from Clarivate, 2022. As a leading publication in the field, the journal is dedicated to disseminating original research articles, comprehensive reviews, insightful perspectives, thought-provoking comments, and valuable correspondence articles and letters to the editor. Its scope encompasses all vital aspects of horticultural plants and disciplines, such as biotechnology, breeding, cellular and molecular biology, evolution, genetics, inter-species interactions, physiology, and the origination and domestication of crops.