Benjamin A. Foutty, Vladimir Calvera, Zhaoyu Han, Carlos R. Kometter, Song Liu, Kenji Watanabe, Takashi Taniguchi, James C. Hone, Steven A. Kivelson, Benjamin E. Feldman
{"title":"单层 WSe2 磁跃迁附近的反常朗道电平间隙","authors":"Benjamin A. Foutty, Vladimir Calvera, Zhaoyu Han, Carlos R. Kometter, Song Liu, Kenji Watanabe, Takashi Taniguchi, James C. Hone, Steven A. Kivelson, Benjamin E. Feldman","doi":"10.1103/physrevx.14.031018","DOIUrl":null,"url":null,"abstract":"First-order phase transitions produce abrupt changes to the character of both ground and excited electronic states. Here we conduct electronic compressibility measurements to map the spin phase diagram and Landau level (LL) energies of monolayer <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><msub><mrow><mi>WSe</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></math> in a magnetic field. We resolve a sequence of first-order phase transitions between completely spin-polarized LLs and states with LLs of both spins. Unexpectedly, the LL gaps are roughly constant over a wide range of magnetic fields below the transitions, which we show reflects spin-polarized ground states with opposite spin excitations. These transitions also extend into compressible regimes, with a sawtooth boundary between full and partial spin polarization. We link these observations to the important influence of LL filling on the exchange energy beyond a smooth density-dependent contribution. Our results show that <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><msub><mrow><mi>WSe</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></math> realizes a unique hierarchy of energy scales where such effects induce reentrant magnetic phase transitions tuned by density and magnetic field.","PeriodicalId":20161,"journal":{"name":"Physical Review X","volume":"214 1","pages":""},"PeriodicalIF":11.6000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Anomalous Landau Level Gaps Near Magnetic Transitions in Monolayer WSe2\",\"authors\":\"Benjamin A. Foutty, Vladimir Calvera, Zhaoyu Han, Carlos R. Kometter, Song Liu, Kenji Watanabe, Takashi Taniguchi, James C. Hone, Steven A. Kivelson, Benjamin E. Feldman\",\"doi\":\"10.1103/physrevx.14.031018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"First-order phase transitions produce abrupt changes to the character of both ground and excited electronic states. Here we conduct electronic compressibility measurements to map the spin phase diagram and Landau level (LL) energies of monolayer <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><msub><mrow><mi>WSe</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></math> in a magnetic field. We resolve a sequence of first-order phase transitions between completely spin-polarized LLs and states with LLs of both spins. Unexpectedly, the LL gaps are roughly constant over a wide range of magnetic fields below the transitions, which we show reflects spin-polarized ground states with opposite spin excitations. These transitions also extend into compressible regimes, with a sawtooth boundary between full and partial spin polarization. We link these observations to the important influence of LL filling on the exchange energy beyond a smooth density-dependent contribution. Our results show that <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><msub><mrow><mi>WSe</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></math> realizes a unique hierarchy of energy scales where such effects induce reentrant magnetic phase transitions tuned by density and magnetic field.\",\"PeriodicalId\":20161,\"journal\":{\"name\":\"Physical Review X\",\"volume\":\"214 1\",\"pages\":\"\"},\"PeriodicalIF\":11.6000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review X\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevx.14.031018\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review X","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevx.14.031018","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Anomalous Landau Level Gaps Near Magnetic Transitions in Monolayer WSe2
First-order phase transitions produce abrupt changes to the character of both ground and excited electronic states. Here we conduct electronic compressibility measurements to map the spin phase diagram and Landau level (LL) energies of monolayer in a magnetic field. We resolve a sequence of first-order phase transitions between completely spin-polarized LLs and states with LLs of both spins. Unexpectedly, the LL gaps are roughly constant over a wide range of magnetic fields below the transitions, which we show reflects spin-polarized ground states with opposite spin excitations. These transitions also extend into compressible regimes, with a sawtooth boundary between full and partial spin polarization. We link these observations to the important influence of LL filling on the exchange energy beyond a smooth density-dependent contribution. Our results show that realizes a unique hierarchy of energy scales where such effects induce reentrant magnetic phase transitions tuned by density and magnetic field.
期刊介绍:
Physical Review X (PRX) stands as an exclusively online, fully open-access journal, emphasizing innovation, quality, and enduring impact in the scientific content it disseminates. Devoted to showcasing a curated selection of papers from pure, applied, and interdisciplinary physics, PRX aims to feature work with the potential to shape current and future research while leaving a lasting and profound impact in their respective fields. Encompassing the entire spectrum of physics subject areas, PRX places a special focus on groundbreaking interdisciplinary research with broad-reaching influence.