Alessia S Ivani, Manuel G Catalano, Giorgio Grioli, Matteo Bianchi, Yon Visell, Antonio Bicchi
{"title":"上肢假肢的触觉感知:机械特性、人体实验和计算结果。","authors":"Alessia S Ivani, Manuel G Catalano, Giorgio Grioli, Matteo Bianchi, Yon Visell, Antonio Bicchi","doi":"10.1109/TOH.2024.3436827","DOIUrl":null,"url":null,"abstract":"<p><p>Tactile feedback is essential for upper-limb prostheses functionality and embodiment, yet its practical implementation presents challenges. Users must adapt to non-physiological signals, increasing cognitive load. However, some prosthetic devices transmit tactile information through socket vibrations, even to untrained individuals. Our experiments validated this observation, demonstrating a user's surprising ability to identify contacted fingers with a purely passive, cosmetic hand. Further experiments with advanced soft articulated hands revealed decreased performance in tactile information relayed by socket vibrations as hand complexity increased. To understand the underlying mechanisms, we conducted numerical and mechanical vibration tests on four prostheses of varying complexity. Additionally, a machine-learning classifier identified the contacted finger based on measured socket signals. Quantitative results confirmed that rigid hands facilitated contact discrimination, achieving 83% accuracy in distinguishing index finger contacts from others. While human discrimination decreased with advanced hands, machine learning surpassed human performance. These findings suggest that rigid prostheses provide natural vibration transmission, potentially reducing the need for tactile feedback devices, which advanced hands may require. Nonetheless, the possibility of machine learning algorithms outperforming human discrimination indicates potential to enhance socket vibrations through active sensing and actuation, bridging the gap in vibration-transmitted tactile discrimination between rigid and advanced hands.</p>","PeriodicalId":13215,"journal":{"name":"IEEE Transactions on Haptics","volume":"PP ","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tactile Perception in Upper Limb Prostheses: Mechanical Characterization, Human Experiments, and Computational Findings.\",\"authors\":\"Alessia S Ivani, Manuel G Catalano, Giorgio Grioli, Matteo Bianchi, Yon Visell, Antonio Bicchi\",\"doi\":\"10.1109/TOH.2024.3436827\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Tactile feedback is essential for upper-limb prostheses functionality and embodiment, yet its practical implementation presents challenges. Users must adapt to non-physiological signals, increasing cognitive load. However, some prosthetic devices transmit tactile information through socket vibrations, even to untrained individuals. Our experiments validated this observation, demonstrating a user's surprising ability to identify contacted fingers with a purely passive, cosmetic hand. Further experiments with advanced soft articulated hands revealed decreased performance in tactile information relayed by socket vibrations as hand complexity increased. To understand the underlying mechanisms, we conducted numerical and mechanical vibration tests on four prostheses of varying complexity. Additionally, a machine-learning classifier identified the contacted finger based on measured socket signals. Quantitative results confirmed that rigid hands facilitated contact discrimination, achieving 83% accuracy in distinguishing index finger contacts from others. While human discrimination decreased with advanced hands, machine learning surpassed human performance. These findings suggest that rigid prostheses provide natural vibration transmission, potentially reducing the need for tactile feedback devices, which advanced hands may require. Nonetheless, the possibility of machine learning algorithms outperforming human discrimination indicates potential to enhance socket vibrations through active sensing and actuation, bridging the gap in vibration-transmitted tactile discrimination between rigid and advanced hands.</p>\",\"PeriodicalId\":13215,\"journal\":{\"name\":\"IEEE Transactions on Haptics\",\"volume\":\"PP \",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-08-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Haptics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1109/TOH.2024.3436827\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, CYBERNETICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Haptics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1109/TOH.2024.3436827","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, CYBERNETICS","Score":null,"Total":0}
Tactile Perception in Upper Limb Prostheses: Mechanical Characterization, Human Experiments, and Computational Findings.
Tactile feedback is essential for upper-limb prostheses functionality and embodiment, yet its practical implementation presents challenges. Users must adapt to non-physiological signals, increasing cognitive load. However, some prosthetic devices transmit tactile information through socket vibrations, even to untrained individuals. Our experiments validated this observation, demonstrating a user's surprising ability to identify contacted fingers with a purely passive, cosmetic hand. Further experiments with advanced soft articulated hands revealed decreased performance in tactile information relayed by socket vibrations as hand complexity increased. To understand the underlying mechanisms, we conducted numerical and mechanical vibration tests on four prostheses of varying complexity. Additionally, a machine-learning classifier identified the contacted finger based on measured socket signals. Quantitative results confirmed that rigid hands facilitated contact discrimination, achieving 83% accuracy in distinguishing index finger contacts from others. While human discrimination decreased with advanced hands, machine learning surpassed human performance. These findings suggest that rigid prostheses provide natural vibration transmission, potentially reducing the need for tactile feedback devices, which advanced hands may require. Nonetheless, the possibility of machine learning algorithms outperforming human discrimination indicates potential to enhance socket vibrations through active sensing and actuation, bridging the gap in vibration-transmitted tactile discrimination between rigid and advanced hands.
期刊介绍:
IEEE Transactions on Haptics (ToH) is a scholarly archival journal that addresses the science, technology, and applications associated with information acquisition and object manipulation through touch. Haptic interactions relevant to this journal include all aspects of manual exploration and manipulation of objects by humans, machines and interactions between the two, performed in real, virtual, teleoperated or networked environments. Research areas of relevance to this publication include, but are not limited to, the following topics: Human haptic and multi-sensory perception and action, Aspects of motor control that explicitly pertain to human haptics, Haptic interactions via passive or active tools and machines, Devices that sense, enable, or create haptic interactions locally or at a distance, Haptic rendering and its association with graphic and auditory rendering in virtual reality, Algorithms, controls, and dynamics of haptic devices, users, and interactions between the two, Human-machine performance and safety with haptic feedback, Haptics in the context of human-computer interactions, Systems and networks using haptic devices and interactions, including multi-modal feedback, Application of the above, for example in areas such as education, rehabilitation, medicine, computer-aided design, skills training, computer games, driver controls, simulation, and visualization.