开/关目标驱动临床不良事件的机器学习预测。

IF 3.5 3区 医学 Q2 CHEMISTRY, MULTIDISCIPLINARY Pharmaceutical Research Pub Date : 2024-08-01 Epub Date: 2024-08-02 DOI:10.1007/s11095-024-03742-x
Albert Cao, Luchen Zhang, Yingzi Bu, Duxin Sun
{"title":"开/关目标驱动临床不良事件的机器学习预测。","authors":"Albert Cao, Luchen Zhang, Yingzi Bu, Duxin Sun","doi":"10.1007/s11095-024-03742-x","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>Currently, 90% of clinical drug development fails, where 30% of these failures are due to clinical toxicity. The current extensive animal toxicity studies are not predictive of clinical adverse events (AEs) at clinical doses, while current computation models only consider very few factors with limited success in clinical toxicity prediction. We aimed to address these issues by developing a machine learning (ML) model to directly predict clinical AEs.</p><p><strong>Methods: </strong>Using a dataset with 759 FDA-approved drugs with known AEs, we first adapted the ConPLex ML model to predict IC <math><mmultiscripts><mrow></mrow> <mn>50</mn> <mrow></mrow></mmultiscripts> </math> values of these FDA-approved drugs against their on-target and off-target binding among 477 protein targets. Subsequently, we constructed a new ML model to predict clinical AEs using IC <math><mmultiscripts><mrow></mrow> <mn>50</mn> <mrow></mrow></mmultiscripts> </math> values of 759 drugs' primary on-target and off-target effects along with tissue-specific protein expression profiles.</p><p><strong>Results: </strong>The adapted ConPLex model predicted drug-target interactions for both on- and off-target effects, as shown by co-localization of the 6 small molecule kinase inhibitors with their respective kinases. The coupled ML models demonstrated good predictive capability of clinical AEs, with accuracy over 75%.</p><p><strong>Conclusions: </strong>Our approach provides a new insight into the mechanistic understanding of in vivo drug toxicity in relationship with drug on-/off-target interactions. The coupled ML models, once validated with larger datasets, may offer advantages to directly predict clinical AEs using in vitro/ex vivo and preclinical data, which will help to reduce drug development failure due to clinical toxicity.</p>","PeriodicalId":20027,"journal":{"name":"Pharmaceutical Research","volume":" ","pages":"1649-1658"},"PeriodicalIF":3.5000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Machine Learning Prediction of On/Off Target-driven Clinical Adverse Events.\",\"authors\":\"Albert Cao, Luchen Zhang, Yingzi Bu, Duxin Sun\",\"doi\":\"10.1007/s11095-024-03742-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objective: </strong>Currently, 90% of clinical drug development fails, where 30% of these failures are due to clinical toxicity. The current extensive animal toxicity studies are not predictive of clinical adverse events (AEs) at clinical doses, while current computation models only consider very few factors with limited success in clinical toxicity prediction. We aimed to address these issues by developing a machine learning (ML) model to directly predict clinical AEs.</p><p><strong>Methods: </strong>Using a dataset with 759 FDA-approved drugs with known AEs, we first adapted the ConPLex ML model to predict IC <math><mmultiscripts><mrow></mrow> <mn>50</mn> <mrow></mrow></mmultiscripts> </math> values of these FDA-approved drugs against their on-target and off-target binding among 477 protein targets. Subsequently, we constructed a new ML model to predict clinical AEs using IC <math><mmultiscripts><mrow></mrow> <mn>50</mn> <mrow></mrow></mmultiscripts> </math> values of 759 drugs' primary on-target and off-target effects along with tissue-specific protein expression profiles.</p><p><strong>Results: </strong>The adapted ConPLex model predicted drug-target interactions for both on- and off-target effects, as shown by co-localization of the 6 small molecule kinase inhibitors with their respective kinases. The coupled ML models demonstrated good predictive capability of clinical AEs, with accuracy over 75%.</p><p><strong>Conclusions: </strong>Our approach provides a new insight into the mechanistic understanding of in vivo drug toxicity in relationship with drug on-/off-target interactions. The coupled ML models, once validated with larger datasets, may offer advantages to directly predict clinical AEs using in vitro/ex vivo and preclinical data, which will help to reduce drug development failure due to clinical toxicity.</p>\",\"PeriodicalId\":20027,\"journal\":{\"name\":\"Pharmaceutical Research\",\"volume\":\" \",\"pages\":\"1649-1658\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pharmaceutical Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s11095-024-03742-x\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/8/2 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmaceutical Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s11095-024-03742-x","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/2 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

目的:目前,90% 的临床药物开发都以失败告终,其中 30% 的失败是由于临床毒性造成的。目前大量的动物毒性研究并不能预测临床剂量下的临床不良事件(AEs),而目前的计算模型只考虑了极少数因素,在临床毒性预测方面的成功率有限。我们旨在通过开发一种机器学习(ML)模型来直接预测临床不良反应,从而解决这些问题:方法:利用包含 759 种已知 AE 的 FDA 批准药物的数据集,我们首先改进了 ConPLex ML 模型,以预测这些 FDA 批准药物与 477 个蛋白质靶点的靶上和靶下结合的 IC 50 值。随后,我们利用 759 种药物的主要靶上和非靶上效应的 IC 50 值以及组织特异性蛋白表达谱构建了一个新的 ML 模型来预测临床 AEs:结果:经过改良的ConPLex模型预测了药物与靶点之间的相互作用,包括靶上效应和非靶上效应,6种小分子激酶抑制剂与各自激酶的共定位显示了这一点。耦合 ML 模型对临床 AE 具有良好的预测能力,准确率超过 75%:我们的方法为从机理上理解体内药物毒性与药物靶上/靶下相互作用的关系提供了新的视角。一旦用更大的数据集进行验证,耦合 ML 模型可能会为利用体外/体内和临床前数据直接预测临床 AE 提供优势,这将有助于减少因临床毒性导致的药物开发失败。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Machine Learning Prediction of On/Off Target-driven Clinical Adverse Events.

Objective: Currently, 90% of clinical drug development fails, where 30% of these failures are due to clinical toxicity. The current extensive animal toxicity studies are not predictive of clinical adverse events (AEs) at clinical doses, while current computation models only consider very few factors with limited success in clinical toxicity prediction. We aimed to address these issues by developing a machine learning (ML) model to directly predict clinical AEs.

Methods: Using a dataset with 759 FDA-approved drugs with known AEs, we first adapted the ConPLex ML model to predict IC 50 values of these FDA-approved drugs against their on-target and off-target binding among 477 protein targets. Subsequently, we constructed a new ML model to predict clinical AEs using IC 50 values of 759 drugs' primary on-target and off-target effects along with tissue-specific protein expression profiles.

Results: The adapted ConPLex model predicted drug-target interactions for both on- and off-target effects, as shown by co-localization of the 6 small molecule kinase inhibitors with their respective kinases. The coupled ML models demonstrated good predictive capability of clinical AEs, with accuracy over 75%.

Conclusions: Our approach provides a new insight into the mechanistic understanding of in vivo drug toxicity in relationship with drug on-/off-target interactions. The coupled ML models, once validated with larger datasets, may offer advantages to directly predict clinical AEs using in vitro/ex vivo and preclinical data, which will help to reduce drug development failure due to clinical toxicity.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Pharmaceutical Research
Pharmaceutical Research 医学-化学综合
CiteScore
6.60
自引率
5.40%
发文量
276
审稿时长
3.4 months
期刊介绍: Pharmaceutical Research, an official journal of the American Association of Pharmaceutical Scientists, is committed to publishing novel research that is mechanism-based, hypothesis-driven and addresses significant issues in drug discovery, development and regulation. Current areas of interest include, but are not limited to: -(pre)formulation engineering and processing- computational biopharmaceutics- drug delivery and targeting- molecular biopharmaceutics and drug disposition (including cellular and molecular pharmacology)- pharmacokinetics, pharmacodynamics and pharmacogenetics. Research may involve nonclinical and clinical studies, and utilize both in vitro and in vivo approaches. Studies on small drug molecules, pharmaceutical solid materials (including biomaterials, polymers and nanoparticles) biotechnology products (including genes, peptides, proteins and vaccines), and genetically engineered cells are welcome.
期刊最新文献
Physiologically Based Pharmacokinetic Modeling to Assess Ritonavir-Digoxin Interactions and Recommendations for Co-Administration Regimens. Pharmacological Innovations in Space: Challenges and Future Perspectives. Regulatory Role of eIF2αK4 in Amino Acid Transporter Expression in Mouse Brain Capillary Endothelial Cells. Chemical Distribution Uniformity Assessment of "Intra-Tablet" by Hyperspectral Raman Imaging Analysis. The Current State of Biotransformation Science - Industry Survey of In Vitro and In Vivo Practices, Clinical Translation, and Future Trends.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1