用于单晶硅层有限温度原子模拟的热喷流方法

IF 2.7 3区 物理与天体物理 Q2 PHYSICS, APPLIED Journal of Applied Physics Pub Date : 2024-08-02 DOI:10.1063/5.0214505
Xuewei Xia, Lei Zhang, Baiyili Liu
{"title":"用于单晶硅层有限温度原子模拟的热喷流方法","authors":"Xuewei Xia, Lei Zhang, Baiyili Liu","doi":"10.1063/5.0214505","DOIUrl":null,"url":null,"abstract":"An accurate and efficient heat bath method plays a key role in atomic simulations of the thermal and mechanical properties of single-crystal silicon. Here, focusing on the single-crystal silicon (111) layer, which is a crucial lattice structure commonly employed as a substrate for chips, we propose a heat jet approach for finite temperature atomic simulations of silicon layers. First, we formulate the linearized dynamic equations for the silicon atoms and calculate the dispersion relation and lattice wave solutions. Then, an appropriate matching boundary condition is chosen for designing the two-way boundary condition, which allows incoming waves to inject into the lattice system while eliminating boundary reflections. Combining the two-way boundary condition and phonon heat source, the heat jet approach for the silicon (111) layer is proposed. Numerical tests illustrate the accuracy and effectiveness of the heat jet approach in simultaneously resolving thermal fluctuations and controlling temperature. Furthermore, we simulate the propagation of a Gaussian hump at a given temperature with the heat jet approach compared to the Nosé–Hoover heat bath. Numerical results demonstrate that the heat jet approach can well describe the movement of large structural deformations among thermal fluctuations without boundary reflections.","PeriodicalId":15088,"journal":{"name":"Journal of Applied Physics","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Heat jet approach for finite temperature atomic simulations of single-crystal silicon layers\",\"authors\":\"Xuewei Xia, Lei Zhang, Baiyili Liu\",\"doi\":\"10.1063/5.0214505\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An accurate and efficient heat bath method plays a key role in atomic simulations of the thermal and mechanical properties of single-crystal silicon. Here, focusing on the single-crystal silicon (111) layer, which is a crucial lattice structure commonly employed as a substrate for chips, we propose a heat jet approach for finite temperature atomic simulations of silicon layers. First, we formulate the linearized dynamic equations for the silicon atoms and calculate the dispersion relation and lattice wave solutions. Then, an appropriate matching boundary condition is chosen for designing the two-way boundary condition, which allows incoming waves to inject into the lattice system while eliminating boundary reflections. Combining the two-way boundary condition and phonon heat source, the heat jet approach for the silicon (111) layer is proposed. Numerical tests illustrate the accuracy and effectiveness of the heat jet approach in simultaneously resolving thermal fluctuations and controlling temperature. Furthermore, we simulate the propagation of a Gaussian hump at a given temperature with the heat jet approach compared to the Nosé–Hoover heat bath. Numerical results demonstrate that the heat jet approach can well describe the movement of large structural deformations among thermal fluctuations without boundary reflections.\",\"PeriodicalId\":15088,\"journal\":{\"name\":\"Journal of Applied Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-08-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0214505\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/5.0214505","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

精确高效的热浴方法在单晶硅的热性能和机械性能的原子模拟中起着关键作用。单晶硅(111)层是一种重要的晶格结构,通常用作芯片的基底,在此,我们提出了一种用于硅层有限温度原子模拟的热喷流方法。首先,我们提出了硅原子的线性化动态方程,并计算了弥散关系和晶格波解。然后,选择适当的匹配边界条件,设计双向边界条件,使进入的波注入晶格系统,同时消除边界反射。结合双向边界条件和声子热源,提出了硅 (111) 层的热喷射方法。数值测试表明了热喷流方法在同时解决热波动和控制温度方面的准确性和有效性。此外,与 Nosé-Hoover 热浴相比,我们模拟了在给定温度下采用热喷流方法的高斯驼峰的传播情况。数值结果表明,热喷流方法可以很好地描述热波动中的大结构变形运动,而不会产生边界反射。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Heat jet approach for finite temperature atomic simulations of single-crystal silicon layers
An accurate and efficient heat bath method plays a key role in atomic simulations of the thermal and mechanical properties of single-crystal silicon. Here, focusing on the single-crystal silicon (111) layer, which is a crucial lattice structure commonly employed as a substrate for chips, we propose a heat jet approach for finite temperature atomic simulations of silicon layers. First, we formulate the linearized dynamic equations for the silicon atoms and calculate the dispersion relation and lattice wave solutions. Then, an appropriate matching boundary condition is chosen for designing the two-way boundary condition, which allows incoming waves to inject into the lattice system while eliminating boundary reflections. Combining the two-way boundary condition and phonon heat source, the heat jet approach for the silicon (111) layer is proposed. Numerical tests illustrate the accuracy and effectiveness of the heat jet approach in simultaneously resolving thermal fluctuations and controlling temperature. Furthermore, we simulate the propagation of a Gaussian hump at a given temperature with the heat jet approach compared to the Nosé–Hoover heat bath. Numerical results demonstrate that the heat jet approach can well describe the movement of large structural deformations among thermal fluctuations without boundary reflections.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Applied Physics
Journal of Applied Physics 物理-物理:应用
CiteScore
5.40
自引率
9.40%
发文量
1534
审稿时长
2.3 months
期刊介绍: The Journal of Applied Physics (JAP) is an influential international journal publishing significant new experimental and theoretical results of applied physics research. Topics covered in JAP are diverse and reflect the most current applied physics research, including: Dielectrics, ferroelectrics, and multiferroics- Electrical discharges, plasmas, and plasma-surface interactions- Emerging, interdisciplinary, and other fields of applied physics- Magnetism, spintronics, and superconductivity- Organic-Inorganic systems, including organic electronics- Photonics, plasmonics, photovoltaics, lasers, optical materials, and phenomena- Physics of devices and sensors- Physics of materials, including electrical, thermal, mechanical and other properties- Physics of matter under extreme conditions- Physics of nanoscale and low-dimensional systems, including atomic and quantum phenomena- Physics of semiconductors- Soft matter, fluids, and biophysics- Thin films, interfaces, and surfaces
期刊最新文献
Effects of irradiation damage on the hardness and elastic properties of quaternary and high entropy transition metal diborides Permittivity enhancement of Al2O3/ZrO2 dielectrics with the incorporation of Pt nanoparticles Minimization of detent force in PMLSM by end magnetic regulating module with free topologies Magnetic tunnel junctions with superlattice barriers Theoretical prediction of chalcogen-based Janus monolayers for self-powered optoelectronic devices
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1