纳米结构对(111)取向纳米铜直接键合的键合机理和机械响应影响的原子模拟

IF 2.7 3区 物理与天体物理 Q2 PHYSICS, APPLIED Journal of Applied Physics Pub Date : 2024-08-02 DOI:10.1063/5.0217053
Cheng-Da Wu, Chien-Fu Liao
{"title":"纳米结构对(111)取向纳米铜直接键合的键合机理和机械响应影响的原子模拟","authors":"Cheng-Da Wu, Chien-Fu Liao","doi":"10.1063/5.0217053","DOIUrl":null,"url":null,"abstract":"Low-temperature, low-pressure Cu-to-Cu direct bonding technology is a promising solution for next-generation high-density interconnects. Previous studies have shown that many properties of nanomaterials are determined by their structural characteristics. Therefore, the effect of the nanostructure (i.e., twin crystal and twin boundary, TB, sizes) on the bonding mechanism and mechanical response of the direct bonding of (111)-oriented nanotwinned Cu (NT-Cu) is studied using molecular dynamics simulations, where TB size means the TB layer thickness in terms of the number of atoms. The simulation results show that NT-Cu with extremely small twin crystals (e.g., 0.625 nm) have poor diffusivity. The number of dislocations induced by plastic deformation increases with increasing twin crystal size during stretching processes, degrading mechanical strength. The strain hardening of bonded NT-Cu with extremely small twin crystals (e.g., 0.625 nm) is dominated by the strong barrier created by a high density of TBs, whereas that with twin crystal sizes of 2.5–10 nm is dominated by dislocation–TB and dislocation–grain boundary interactions. Bonded NT-Cu with 2–6 atoms per TB layer exhibits softening at initial plastic deformation due to the onset of partial collapse of TBs; however, the strength then significantly increases with a further increase in strain due to strain hardening.","PeriodicalId":15088,"journal":{"name":"Journal of Applied Physics","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Atomistic simulations of effects of nanostructure on bonding mechanism and mechanical response of direct bonding of (111)-oriented nanotwinned Cu\",\"authors\":\"Cheng-Da Wu, Chien-Fu Liao\",\"doi\":\"10.1063/5.0217053\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Low-temperature, low-pressure Cu-to-Cu direct bonding technology is a promising solution for next-generation high-density interconnects. Previous studies have shown that many properties of nanomaterials are determined by their structural characteristics. Therefore, the effect of the nanostructure (i.e., twin crystal and twin boundary, TB, sizes) on the bonding mechanism and mechanical response of the direct bonding of (111)-oriented nanotwinned Cu (NT-Cu) is studied using molecular dynamics simulations, where TB size means the TB layer thickness in terms of the number of atoms. The simulation results show that NT-Cu with extremely small twin crystals (e.g., 0.625 nm) have poor diffusivity. The number of dislocations induced by plastic deformation increases with increasing twin crystal size during stretching processes, degrading mechanical strength. The strain hardening of bonded NT-Cu with extremely small twin crystals (e.g., 0.625 nm) is dominated by the strong barrier created by a high density of TBs, whereas that with twin crystal sizes of 2.5–10 nm is dominated by dislocation–TB and dislocation–grain boundary interactions. Bonded NT-Cu with 2–6 atoms per TB layer exhibits softening at initial plastic deformation due to the onset of partial collapse of TBs; however, the strength then significantly increases with a further increase in strain due to strain hardening.\",\"PeriodicalId\":15088,\"journal\":{\"name\":\"Journal of Applied Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-08-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0217053\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/5.0217053","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

低温、低压铜-铜直接键合技术是下一代高密度互连器件的理想解决方案。以往的研究表明,纳米材料的许多特性由其结构特征决定。因此,我们利用分子动力学模拟研究了纳米结构(即孪晶和孪晶边界尺寸)对(111)取向纳米孪晶铜(NT-Cu)直接键合的键合机理和机械响应的影响。模拟结果表明,孪晶极小(如 0.625 nm)的 NT-Cu 扩散性很差。在拉伸过程中,塑性变形引起的位错数量会随着孪晶尺寸的增加而增加,从而降低机械强度。孪晶极小(如 0.625 nm)的键合 NT-Cu 的应变硬化主要是由高密度的 TB 产生的强阻挡作用引起的,而孪晶尺寸为 2.5-10 nm 的键合 NT-Cu 的应变硬化主要是由位错-TB 和位错-晶界相互作用引起的。每个 TB 层有 2-6 个原子的结合 NT-Cu 在初始塑性变形时会因 TB 的部分塌缩而软化;然而,随着应变硬化导致应变进一步增加,强度也会显著增加。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Atomistic simulations of effects of nanostructure on bonding mechanism and mechanical response of direct bonding of (111)-oriented nanotwinned Cu
Low-temperature, low-pressure Cu-to-Cu direct bonding technology is a promising solution for next-generation high-density interconnects. Previous studies have shown that many properties of nanomaterials are determined by their structural characteristics. Therefore, the effect of the nanostructure (i.e., twin crystal and twin boundary, TB, sizes) on the bonding mechanism and mechanical response of the direct bonding of (111)-oriented nanotwinned Cu (NT-Cu) is studied using molecular dynamics simulations, where TB size means the TB layer thickness in terms of the number of atoms. The simulation results show that NT-Cu with extremely small twin crystals (e.g., 0.625 nm) have poor diffusivity. The number of dislocations induced by plastic deformation increases with increasing twin crystal size during stretching processes, degrading mechanical strength. The strain hardening of bonded NT-Cu with extremely small twin crystals (e.g., 0.625 nm) is dominated by the strong barrier created by a high density of TBs, whereas that with twin crystal sizes of 2.5–10 nm is dominated by dislocation–TB and dislocation–grain boundary interactions. Bonded NT-Cu with 2–6 atoms per TB layer exhibits softening at initial plastic deformation due to the onset of partial collapse of TBs; however, the strength then significantly increases with a further increase in strain due to strain hardening.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Applied Physics
Journal of Applied Physics 物理-物理:应用
CiteScore
5.40
自引率
9.40%
发文量
1534
审稿时长
2.3 months
期刊介绍: The Journal of Applied Physics (JAP) is an influential international journal publishing significant new experimental and theoretical results of applied physics research. Topics covered in JAP are diverse and reflect the most current applied physics research, including: Dielectrics, ferroelectrics, and multiferroics- Electrical discharges, plasmas, and plasma-surface interactions- Emerging, interdisciplinary, and other fields of applied physics- Magnetism, spintronics, and superconductivity- Organic-Inorganic systems, including organic electronics- Photonics, plasmonics, photovoltaics, lasers, optical materials, and phenomena- Physics of devices and sensors- Physics of materials, including electrical, thermal, mechanical and other properties- Physics of matter under extreme conditions- Physics of nanoscale and low-dimensional systems, including atomic and quantum phenomena- Physics of semiconductors- Soft matter, fluids, and biophysics- Thin films, interfaces, and surfaces
期刊最新文献
Effects of irradiation damage on the hardness and elastic properties of quaternary and high entropy transition metal diborides Permittivity enhancement of Al2O3/ZrO2 dielectrics with the incorporation of Pt nanoparticles Minimization of detent force in PMLSM by end magnetic regulating module with free topologies Magnetic tunnel junctions with superlattice barriers Theoretical prediction of chalcogen-based Janus monolayers for self-powered optoelectronic devices
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1