I. Bibimoune, E. Hirschmann, M. O. Liedke, A. Wagner, M. Kawasaki, T. Baudin, I. Mkinsi, K. Abib, Y. Huang, T. G. Langdon, D. Bradai
{"title":"利用正电子湮没能谱分析不相溶复合铜 43%Cr 合金在高压扭转和退火后的缺陷微观结构演变","authors":"I. Bibimoune, E. Hirschmann, M. O. Liedke, A. Wagner, M. Kawasaki, T. Baudin, I. Mkinsi, K. Abib, Y. Huang, T. G. Langdon, D. Bradai","doi":"10.1007/s12540-024-01745-2","DOIUrl":null,"url":null,"abstract":"<p>The microstructure of a Cu43%Cr alloy after high-pressure torsion (HPT) processing and annealing for 1 h was analyzed using Doppler broadening – variable energy PAS (DB-VEPAS) and conventional positron annihilation lifetime spectroscopy (cPALS). DB-VEPAS analysis of the near-surface defects reveals the existence of a nanosized oxide layer whose thickness increases from 43 to 103 nm with temperature (210–850 °C) while the diffusion length is unaffected around 20 nm. cPALS analysis revealed two lifetime components of the bulk defects, namely the components related to either vacancies or dislocations, for the as-received material with annealing at 925 °C. After HPT processing, the alloy showed two components which correspond to positrons trapped and annihilated at dislocations (lifetime ̴ 160 ps) in Cu and Cr and at clusters of vacancies (about 13–10 vacancies). The intensity of the first component decreases with increasing annealing temperatures from 210 to 850 °C, thereby implying a partial annihilation of dislocations due to microstructure recovery. The variation of the second component depends on the variation of vacancy cluster size (from about 13 and 10 to about 4 vacancies) resulting from different annealing temperatures. Additionally, Vickers microhardness measurements show that the alloy is substantially hardened after processing by HPT for N = 20 turns. After annealing for 1 h at 210, 550 and 850 °C, the HPT-processed alloy after 5 turns demonstrated a gradual softening by microstructural recovery. Annealing-induced hardening is observed after HPT for 20 turns followed by heating up to 550 °C while softening is observed after annealing at 850 °C.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3>\n","PeriodicalId":703,"journal":{"name":"Metals and Materials International","volume":"104 1","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Defect Microstructure Evolution in an Immiscible Composite Cu43%Cr Alloy After High-Pressure Torsion and Annealing Using Positron Annihilation Spectroscopy\",\"authors\":\"I. Bibimoune, E. Hirschmann, M. O. Liedke, A. Wagner, M. Kawasaki, T. Baudin, I. Mkinsi, K. Abib, Y. Huang, T. G. Langdon, D. Bradai\",\"doi\":\"10.1007/s12540-024-01745-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The microstructure of a Cu43%Cr alloy after high-pressure torsion (HPT) processing and annealing for 1 h was analyzed using Doppler broadening – variable energy PAS (DB-VEPAS) and conventional positron annihilation lifetime spectroscopy (cPALS). DB-VEPAS analysis of the near-surface defects reveals the existence of a nanosized oxide layer whose thickness increases from 43 to 103 nm with temperature (210–850 °C) while the diffusion length is unaffected around 20 nm. cPALS analysis revealed two lifetime components of the bulk defects, namely the components related to either vacancies or dislocations, for the as-received material with annealing at 925 °C. After HPT processing, the alloy showed two components which correspond to positrons trapped and annihilated at dislocations (lifetime ̴ 160 ps) in Cu and Cr and at clusters of vacancies (about 13–10 vacancies). The intensity of the first component decreases with increasing annealing temperatures from 210 to 850 °C, thereby implying a partial annihilation of dislocations due to microstructure recovery. The variation of the second component depends on the variation of vacancy cluster size (from about 13 and 10 to about 4 vacancies) resulting from different annealing temperatures. Additionally, Vickers microhardness measurements show that the alloy is substantially hardened after processing by HPT for N = 20 turns. After annealing for 1 h at 210, 550 and 850 °C, the HPT-processed alloy after 5 turns demonstrated a gradual softening by microstructural recovery. Annealing-induced hardening is observed after HPT for 20 turns followed by heating up to 550 °C while softening is observed after annealing at 850 °C.</p><h3 data-test=\\\"abstract-sub-heading\\\">Graphical Abstract</h3>\\n\",\"PeriodicalId\":703,\"journal\":{\"name\":\"Metals and Materials International\",\"volume\":\"104 1\",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-08-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Metals and Materials International\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1007/s12540-024-01745-2\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metals and Materials International","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s12540-024-01745-2","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Defect Microstructure Evolution in an Immiscible Composite Cu43%Cr Alloy After High-Pressure Torsion and Annealing Using Positron Annihilation Spectroscopy
The microstructure of a Cu43%Cr alloy after high-pressure torsion (HPT) processing and annealing for 1 h was analyzed using Doppler broadening – variable energy PAS (DB-VEPAS) and conventional positron annihilation lifetime spectroscopy (cPALS). DB-VEPAS analysis of the near-surface defects reveals the existence of a nanosized oxide layer whose thickness increases from 43 to 103 nm with temperature (210–850 °C) while the diffusion length is unaffected around 20 nm. cPALS analysis revealed two lifetime components of the bulk defects, namely the components related to either vacancies or dislocations, for the as-received material with annealing at 925 °C. After HPT processing, the alloy showed two components which correspond to positrons trapped and annihilated at dislocations (lifetime ̴ 160 ps) in Cu and Cr and at clusters of vacancies (about 13–10 vacancies). The intensity of the first component decreases with increasing annealing temperatures from 210 to 850 °C, thereby implying a partial annihilation of dislocations due to microstructure recovery. The variation of the second component depends on the variation of vacancy cluster size (from about 13 and 10 to about 4 vacancies) resulting from different annealing temperatures. Additionally, Vickers microhardness measurements show that the alloy is substantially hardened after processing by HPT for N = 20 turns. After annealing for 1 h at 210, 550 and 850 °C, the HPT-processed alloy after 5 turns demonstrated a gradual softening by microstructural recovery. Annealing-induced hardening is observed after HPT for 20 turns followed by heating up to 550 °C while softening is observed after annealing at 850 °C.
期刊介绍:
Metals and Materials International publishes original papers and occasional critical reviews on all aspects of research and technology in materials engineering: physical metallurgy, materials science, and processing of metals and other materials. Emphasis is placed on those aspects of the science of materials that are concerned with the relationships among the processing, structure and properties (mechanical, chemical, electrical, electrochemical, magnetic and optical) of materials. Aspects of processing include the melting, casting, and fabrication with the thermodynamics, kinetics and modeling.