Camila M. Zanella, Ruth MacCormack, John Caulfield, Anna Gordon, Huw Jones, Amelia Hubbard, Lesley A. Boyd
{"title":"小麦黄锈病感染:小麦幼苗接种前的光照量如何影响感染效率","authors":"Camila M. Zanella, Ruth MacCormack, John Caulfield, Anna Gordon, Huw Jones, Amelia Hubbard, Lesley A. Boyd","doi":"10.1111/ppa.13977","DOIUrl":null,"url":null,"abstract":"Many factors are known to influence infection by cereal rusts, including environmental variables such at light, humidity and temperature, the topography of the leaf surface, as well as plant volatiles. However, few studies have aimed to link these factors. Previously, the quantity of light received by wheat seedlings prior to inoculation with <jats:italic>Puccinia striiformis</jats:italic> f. sp. <jats:italic>tritici</jats:italic> (Pst) urediniospores was shown to influence yellow rust infection efficiency. In this study we show that germination and the ability of germlings (germinated urediniospores) to enter stomata is enhanced on wheat seedlings subjected to high quantities of light pre‐inoculation with Pst urediniospores, while on seedlings exposed to a long dark period germination and infection were compromised. Using headspace collections and gas chromatography–mass spectrometry (GC–MS) analysis thereof, we link this effect of high light quantity to quantitative changes in the profile of volatile organic compounds (VOCs). We show that the VOCs within headspace collections from wheat seedlings exposed to high quantities of light were able to support greater levels of Pst urediniospore germination than the headspace collections from wheat seedlings exposed to a period of dark. In vitro analysis of individual VOCs identified compounds that enhanced Pst urediniospore germination. These VOCs included the sesquiterpene caryophyllene, the monoterpene α‐pinene, the fatty acid α‐linolenic acid, the organic alcohols 1‐hexanol, 3‐hexen‐1‐ol and 5‐hexen‐1‐ol, the aldehyde <jats:italic>cis</jats:italic>‐3‐hexenal and the ester hexyl acetate.","PeriodicalId":20075,"journal":{"name":"Plant Pathology","volume":"37 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Yellow rust infection of wheat: How the quantity of light received by wheat seedlings before inoculation affects infection efficiency\",\"authors\":\"Camila M. Zanella, Ruth MacCormack, John Caulfield, Anna Gordon, Huw Jones, Amelia Hubbard, Lesley A. Boyd\",\"doi\":\"10.1111/ppa.13977\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Many factors are known to influence infection by cereal rusts, including environmental variables such at light, humidity and temperature, the topography of the leaf surface, as well as plant volatiles. However, few studies have aimed to link these factors. Previously, the quantity of light received by wheat seedlings prior to inoculation with <jats:italic>Puccinia striiformis</jats:italic> f. sp. <jats:italic>tritici</jats:italic> (Pst) urediniospores was shown to influence yellow rust infection efficiency. In this study we show that germination and the ability of germlings (germinated urediniospores) to enter stomata is enhanced on wheat seedlings subjected to high quantities of light pre‐inoculation with Pst urediniospores, while on seedlings exposed to a long dark period germination and infection were compromised. Using headspace collections and gas chromatography–mass spectrometry (GC–MS) analysis thereof, we link this effect of high light quantity to quantitative changes in the profile of volatile organic compounds (VOCs). We show that the VOCs within headspace collections from wheat seedlings exposed to high quantities of light were able to support greater levels of Pst urediniospore germination than the headspace collections from wheat seedlings exposed to a period of dark. In vitro analysis of individual VOCs identified compounds that enhanced Pst urediniospore germination. These VOCs included the sesquiterpene caryophyllene, the monoterpene α‐pinene, the fatty acid α‐linolenic acid, the organic alcohols 1‐hexanol, 3‐hexen‐1‐ol and 5‐hexen‐1‐ol, the aldehyde <jats:italic>cis</jats:italic>‐3‐hexenal and the ester hexyl acetate.\",\"PeriodicalId\":20075,\"journal\":{\"name\":\"Plant Pathology\",\"volume\":\"37 1\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Pathology\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1111/ppa.13977\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRONOMY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Pathology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1111/ppa.13977","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
Yellow rust infection of wheat: How the quantity of light received by wheat seedlings before inoculation affects infection efficiency
Many factors are known to influence infection by cereal rusts, including environmental variables such at light, humidity and temperature, the topography of the leaf surface, as well as plant volatiles. However, few studies have aimed to link these factors. Previously, the quantity of light received by wheat seedlings prior to inoculation with Puccinia striiformis f. sp. tritici (Pst) urediniospores was shown to influence yellow rust infection efficiency. In this study we show that germination and the ability of germlings (germinated urediniospores) to enter stomata is enhanced on wheat seedlings subjected to high quantities of light pre‐inoculation with Pst urediniospores, while on seedlings exposed to a long dark period germination and infection were compromised. Using headspace collections and gas chromatography–mass spectrometry (GC–MS) analysis thereof, we link this effect of high light quantity to quantitative changes in the profile of volatile organic compounds (VOCs). We show that the VOCs within headspace collections from wheat seedlings exposed to high quantities of light were able to support greater levels of Pst urediniospore germination than the headspace collections from wheat seedlings exposed to a period of dark. In vitro analysis of individual VOCs identified compounds that enhanced Pst urediniospore germination. These VOCs included the sesquiterpene caryophyllene, the monoterpene α‐pinene, the fatty acid α‐linolenic acid, the organic alcohols 1‐hexanol, 3‐hexen‐1‐ol and 5‐hexen‐1‐ol, the aldehyde cis‐3‐hexenal and the ester hexyl acetate.
期刊介绍:
This international journal, owned and edited by the British Society for Plant Pathology, covers all aspects of plant pathology and reaches subscribers in 80 countries. Top quality original research papers and critical reviews from around the world cover: diseases of temperate and tropical plants caused by fungi, bacteria, viruses, phytoplasmas and nematodes; physiological, biochemical, molecular, ecological, genetic and economic aspects of plant pathology; disease epidemiology and modelling; disease appraisal and crop loss assessment; and plant disease control and disease-related crop management.