Manuel Alonso-Orts, Ruben J. T. Neelissen, Daniel Carrasco, Marco Schowalter, Andreas Rosenauer, Emilio Nogales, Bianchi Méndez, Martin Eickhoff
{"title":"基于 ALD 封装 Ga2O3:Cr DBR 微腔的精确、稳健的宽量程发光微温计","authors":"Manuel Alonso-Orts, Ruben J. T. Neelissen, Daniel Carrasco, Marco Schowalter, Andreas Rosenauer, Emilio Nogales, Bianchi Méndez, Martin Eickhoff","doi":"10.1002/admt.202400881","DOIUrl":null,"url":null,"abstract":"The high spatial resolution and contactless optical readout capabilities of luminescence thermometry offer significant advantages in numerous fields, including biomedicine, space exploration and optoelectronics. In addition, robust, reproducible, and accurate temperature measurements are essential in these areas. The ultra-wide band gap semiconductor material Ga<sub>2</sub>O<sub>3</sub> is a suitable host for optical sensing in harsh environments due to its high stability. In this work, the thermometric operation of Ga<sub>2</sub>O<sub>3</sub>:Cr-based microcavities are evaluated. They are designed as follows: Ga<sub>2</sub>O<sub>3</sub>:Cr microwires are encapsulated in multilayers fabricated by atomic layer deposition (ALD), which act as both Bragg reflectors and protective layers for the thermometric sensor. Prior to the ALD encapsulation step, focused ion beam carved trenches at the microwire ends are necessary to accommodate the multilayer coating. The structural and optical properties of the devices are assessed experimentally, analytically and by simulations. The developed microthermometers can be easily calibrated using a cubic polynomial for the temperature-dependent resonant peak position shift. A better than 0.5 °C temperature resolution and accuracy for temperatures above −80 °C is demonstrated. Additionally, the devices show robustness against excitation laser densities of at least 34 W mm<sup>−2</sup>, can operate at temperatures up to 600 °C and remain functional in liquids.","PeriodicalId":7200,"journal":{"name":"Advanced Materials & Technologies","volume":"47 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Accurate and Robust Wide-Range Luminescent Microthermometer Based on ALD-Encapsulated Ga2O3:Cr DBR Microcavities\",\"authors\":\"Manuel Alonso-Orts, Ruben J. T. Neelissen, Daniel Carrasco, Marco Schowalter, Andreas Rosenauer, Emilio Nogales, Bianchi Méndez, Martin Eickhoff\",\"doi\":\"10.1002/admt.202400881\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The high spatial resolution and contactless optical readout capabilities of luminescence thermometry offer significant advantages in numerous fields, including biomedicine, space exploration and optoelectronics. In addition, robust, reproducible, and accurate temperature measurements are essential in these areas. The ultra-wide band gap semiconductor material Ga<sub>2</sub>O<sub>3</sub> is a suitable host for optical sensing in harsh environments due to its high stability. In this work, the thermometric operation of Ga<sub>2</sub>O<sub>3</sub>:Cr-based microcavities are evaluated. They are designed as follows: Ga<sub>2</sub>O<sub>3</sub>:Cr microwires are encapsulated in multilayers fabricated by atomic layer deposition (ALD), which act as both Bragg reflectors and protective layers for the thermometric sensor. Prior to the ALD encapsulation step, focused ion beam carved trenches at the microwire ends are necessary to accommodate the multilayer coating. The structural and optical properties of the devices are assessed experimentally, analytically and by simulations. The developed microthermometers can be easily calibrated using a cubic polynomial for the temperature-dependent resonant peak position shift. A better than 0.5 °C temperature resolution and accuracy for temperatures above −80 °C is demonstrated. Additionally, the devices show robustness against excitation laser densities of at least 34 W mm<sup>−2</sup>, can operate at temperatures up to 600 °C and remain functional in liquids.\",\"PeriodicalId\":7200,\"journal\":{\"name\":\"Advanced Materials & Technologies\",\"volume\":\"47 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Materials & Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/admt.202400881\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials & Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/admt.202400881","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
发光测温仪的高空间分辨率和非接触式光学读出功能为生物医学、太空探索和光电子学等众多领域提供了显著优势。此外,稳健、可重现和精确的温度测量在这些领域也至关重要。超宽带隙半导体材料 Ga2O3 具有高稳定性,适合在恶劣环境中进行光学传感。在这项工作中,对基于 Ga2O3:Cr 的微腔的测温操作进行了评估。它们的设计如下:Ga2O3:Cr微线封装在通过原子层沉积(ALD)制造的多层膜中,这些多层膜既是布拉格反射器,又是测温传感器的保护层。在进行 ALD 封装之前,必须在微线两端用聚焦离子束刻出沟槽,以容纳多层涂层。通过实验、分析和模拟,对设备的结构和光学特性进行了评估。所开发的微温度计可使用三次多项式轻松校准随温度变化的共振峰位置偏移。温度分辨率和精确度优于 0.5 °C,适用于 -80 °C 以上的温度。此外,该装置在激发激光密度至少为 34 W mm-2 的情况下也表现出很强的稳定性,可在高达 600 °C 的温度下工作,并能在液体中保持功能。
Accurate and Robust Wide-Range Luminescent Microthermometer Based on ALD-Encapsulated Ga2O3:Cr DBR Microcavities
The high spatial resolution and contactless optical readout capabilities of luminescence thermometry offer significant advantages in numerous fields, including biomedicine, space exploration and optoelectronics. In addition, robust, reproducible, and accurate temperature measurements are essential in these areas. The ultra-wide band gap semiconductor material Ga2O3 is a suitable host for optical sensing in harsh environments due to its high stability. In this work, the thermometric operation of Ga2O3:Cr-based microcavities are evaluated. They are designed as follows: Ga2O3:Cr microwires are encapsulated in multilayers fabricated by atomic layer deposition (ALD), which act as both Bragg reflectors and protective layers for the thermometric sensor. Prior to the ALD encapsulation step, focused ion beam carved trenches at the microwire ends are necessary to accommodate the multilayer coating. The structural and optical properties of the devices are assessed experimentally, analytically and by simulations. The developed microthermometers can be easily calibrated using a cubic polynomial for the temperature-dependent resonant peak position shift. A better than 0.5 °C temperature resolution and accuracy for temperatures above −80 °C is demonstrated. Additionally, the devices show robustness against excitation laser densities of at least 34 W mm−2, can operate at temperatures up to 600 °C and remain functional in liquids.