Mohamed A. Ghanem, Abdullah M. Al-Mayouf, Mohamed O. Abdulkader, Khalaf A. Alfudhayli
{"title":"用磷酸镍催化剂层对泡沫镍进行阳极氧化改性,以促进电催化尿素氧化和氢气进化反应","authors":"Mohamed A. Ghanem, Abdullah M. Al-Mayouf, Mohamed O. Abdulkader, Khalaf A. Alfudhayli","doi":"10.1016/j.jscs.2024.101913","DOIUrl":null,"url":null,"abstract":"<div><p>Urea oxidation reaction (UOR) and hydrogen evolution reaction (HER) are the key processes for implementing urinated water electrolysis and hydrogen green production, respectively. This contribution investigates the modification of commercial nickel foam (NF) with a nickel phosphate (NiPO/NF) heterostructure layer via anodizing in phosphate solution at various potentials (5, 10 and 15 V) as a simple and efficient route to boost the urea-assisted water electrolysis and hydrogen production in alkaline medium. The morphology and composition physicochemical characterisation of the phosphate layer exhibit aggregates of crystalline nanoparticles with interstitial mesoporous and macroporous networks with a mole composition ratio of 9.42: 1.0: 8.14 for Ni: P: O respectively. The electrochemical measurements revealed the NiPO/NF anodized at 10 V exhibits a superior electroactive surface area of 255 cm<sup>2</sup>, a substantially higher urea oxidation current compared to pristine NF, achieving 20 and 500 mA/cm<sup>2</sup> at 1.35 and 1.6 V vs. RHE respectively and retained 100 % of activity during the urea electrolysis for more than 3 h. The electrochemical impedance analysis confirmed the alkaline urea oxidation reaction proceeded via indirect (EC) and direct mechanism and the CO<sub>2</sub> intermediates adsorption–desorption became the predominant reaction at more positive potential. The NiPO/NF anode employed in an H-shape can deliver up to ±400 mA/cm<sup>2</sup> for UOR/HER at a bias potential of 1.85 V and 8-fold (2.0 mmol/min) much higher hydrogen production rate compared to the pristine NF anode (0.25 mmol/min). Combining commercial nickel foam modification via anodizing and alkaline urea electrolysis at ambient conditions offers a unique and innovative solution for both large-scale hydrogen green production as well as remedy of the urinated wastewater for a more sustainable future.</p></div>","PeriodicalId":16974,"journal":{"name":"Journal of Saudi Chemical Society","volume":"28 5","pages":"Article 101913"},"PeriodicalIF":5.8000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S131961032400108X/pdfft?md5=1bd07d969e0bdd8d9088be4f4a1c555e&pid=1-s2.0-S131961032400108X-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Modification of nickel foam with nickel phosphate catalyst layer via anodizing for boosting the electrocatalytic urea oxidation and hydrogen evolution reactions\",\"authors\":\"Mohamed A. Ghanem, Abdullah M. Al-Mayouf, Mohamed O. Abdulkader, Khalaf A. Alfudhayli\",\"doi\":\"10.1016/j.jscs.2024.101913\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Urea oxidation reaction (UOR) and hydrogen evolution reaction (HER) are the key processes for implementing urinated water electrolysis and hydrogen green production, respectively. This contribution investigates the modification of commercial nickel foam (NF) with a nickel phosphate (NiPO/NF) heterostructure layer via anodizing in phosphate solution at various potentials (5, 10 and 15 V) as a simple and efficient route to boost the urea-assisted water electrolysis and hydrogen production in alkaline medium. The morphology and composition physicochemical characterisation of the phosphate layer exhibit aggregates of crystalline nanoparticles with interstitial mesoporous and macroporous networks with a mole composition ratio of 9.42: 1.0: 8.14 for Ni: P: O respectively. The electrochemical measurements revealed the NiPO/NF anodized at 10 V exhibits a superior electroactive surface area of 255 cm<sup>2</sup>, a substantially higher urea oxidation current compared to pristine NF, achieving 20 and 500 mA/cm<sup>2</sup> at 1.35 and 1.6 V vs. RHE respectively and retained 100 % of activity during the urea electrolysis for more than 3 h. The electrochemical impedance analysis confirmed the alkaline urea oxidation reaction proceeded via indirect (EC) and direct mechanism and the CO<sub>2</sub> intermediates adsorption–desorption became the predominant reaction at more positive potential. The NiPO/NF anode employed in an H-shape can deliver up to ±400 mA/cm<sup>2</sup> for UOR/HER at a bias potential of 1.85 V and 8-fold (2.0 mmol/min) much higher hydrogen production rate compared to the pristine NF anode (0.25 mmol/min). Combining commercial nickel foam modification via anodizing and alkaline urea electrolysis at ambient conditions offers a unique and innovative solution for both large-scale hydrogen green production as well as remedy of the urinated wastewater for a more sustainable future.</p></div>\",\"PeriodicalId\":16974,\"journal\":{\"name\":\"Journal of Saudi Chemical Society\",\"volume\":\"28 5\",\"pages\":\"Article 101913\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2024-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S131961032400108X/pdfft?md5=1bd07d969e0bdd8d9088be4f4a1c555e&pid=1-s2.0-S131961032400108X-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Saudi Chemical Society\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S131961032400108X\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Saudi Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S131961032400108X","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
尿素氧化反应(UOR)和氢进化反应(HER)分别是实现尿液电解和绿色制氢的关键过程。本文研究了通过在不同电位(5、10 和 15 V)的磷酸盐溶液中阳极氧化,用磷酸镍(NiPO/NF)异质结构层对商用泡沫镍(NF)进行改性,以此作为在碱性介质中促进尿素辅助水电解和制氢的一种简单而有效的途径。磷酸盐层的形貌和组成理化特征显示出结晶纳米粒子的聚集体以及间隙介孔和大孔网络,Ni.P.O 的摩尔组成比分别为 9.42:1.0:8.14:P: O 的摩尔组成比分别为 9.42:1.0:8.14。电化学测量显示,在 10 V 下阳极氧化的 NiPO/NF 具有 255 cm 的超大电活性表面积,与原始 NF 相比,尿素氧化电流大幅提高,在 1.35 V 和 1.6 V 条件下分别达到 20 mA/cm 和 500 mA/cm vs. RHE。电化学阻抗分析证实,碱性尿素氧化反应通过间接(EC)和直接机制进行,而 CO 中间体的吸附-解吸反应在更正的电位下成为主要反应。与原始 NF 阳极(0.25 mmol/min)相比,采用 H 形的 NiPO/NF 阳极在偏置电位为 1.85 V 时可提供高达 ±400 mA/cm 的 UOR/HER 电流,制氢速率高出 8 倍(2.0 mmol/min)。通过阳极氧化对商用泡沫镍进行改性,并在环境条件下进行碱性尿素电解,为大规模氢气绿色生产和尿废水处理提供了独特的创新解决方案,从而实现更可持续的未来。
Modification of nickel foam with nickel phosphate catalyst layer via anodizing for boosting the electrocatalytic urea oxidation and hydrogen evolution reactions
Urea oxidation reaction (UOR) and hydrogen evolution reaction (HER) are the key processes for implementing urinated water electrolysis and hydrogen green production, respectively. This contribution investigates the modification of commercial nickel foam (NF) with a nickel phosphate (NiPO/NF) heterostructure layer via anodizing in phosphate solution at various potentials (5, 10 and 15 V) as a simple and efficient route to boost the urea-assisted water electrolysis and hydrogen production in alkaline medium. The morphology and composition physicochemical characterisation of the phosphate layer exhibit aggregates of crystalline nanoparticles with interstitial mesoporous and macroporous networks with a mole composition ratio of 9.42: 1.0: 8.14 for Ni: P: O respectively. The electrochemical measurements revealed the NiPO/NF anodized at 10 V exhibits a superior electroactive surface area of 255 cm2, a substantially higher urea oxidation current compared to pristine NF, achieving 20 and 500 mA/cm2 at 1.35 and 1.6 V vs. RHE respectively and retained 100 % of activity during the urea electrolysis for more than 3 h. The electrochemical impedance analysis confirmed the alkaline urea oxidation reaction proceeded via indirect (EC) and direct mechanism and the CO2 intermediates adsorption–desorption became the predominant reaction at more positive potential. The NiPO/NF anode employed in an H-shape can deliver up to ±400 mA/cm2 for UOR/HER at a bias potential of 1.85 V and 8-fold (2.0 mmol/min) much higher hydrogen production rate compared to the pristine NF anode (0.25 mmol/min). Combining commercial nickel foam modification via anodizing and alkaline urea electrolysis at ambient conditions offers a unique and innovative solution for both large-scale hydrogen green production as well as remedy of the urinated wastewater for a more sustainable future.
期刊介绍:
Journal of Saudi Chemical Society is an English language, peer-reviewed scholarly publication in the area of chemistry. Journal of Saudi Chemical Society publishes original papers, reviews and short reports on, but not limited to:
•Inorganic chemistry
•Physical chemistry
•Organic chemistry
•Analytical chemistry
Journal of Saudi Chemical Society is the official publication of the Saudi Chemical Society and is published by King Saud University in collaboration with Elsevier and is edited by an international group of eminent researchers.