Mariana T. Donato, Pranjal Nautiyal, Jonas Deuermeier, Luís C. Branco, Benilde Saramago, Rogério Colaço, Robert W. Carpick
{"title":"作为极压添加剂的离子液体在轴承钢中的应用","authors":"Mariana T. Donato, Pranjal Nautiyal, Jonas Deuermeier, Luís C. Branco, Benilde Saramago, Rogério Colaço, Robert W. Carpick","doi":"10.1007/s11249-024-01898-6","DOIUrl":null,"url":null,"abstract":"<div><p>The protection of steel surfaces from wear under extreme pressure conditions is of major importance in several industries as it provides better performance and longer life of machinery. The motivation for this work was to study the lubrication of steel by ionic liquids (ILs), which have recently emerged as greener alternatives to commercial lubricants and additives. Three ILs based on sulfur-containing anions, used as 2-wt% additives in polyethylene glycol base oil (MW 200; PEG 200), were tested in the lubrication of ASTM 52100 bearing steel contacts in extreme pressure conditions (under mixed lubrication with a Hertzian pressure of 1.12 GPa) using a mini traction machine (MTM). Due to the poor resistance to corrosion of bearing steel, a semi-ester of succinic acid derivative corrosion inhibitor (Lanxess RC 4801) was added to the mixtures at a 1 wt% concentration. The ILs 1-hexyl-methylimidazolium trifluoromethanesulfonate ([C<sub>6</sub>mim][TfO]) and 1-hexyl-4-picolinium trifluoromethanesulfonate ([C<sub>6</sub>-4-pic][TfO]) revealed promising results in terms of surface protection of bearing steel. In contrast, 4-picolinium hydrogen sulfate ([4-picH][HSO<sub>4</sub>]) as 2-wt% additive to PEG 200 + 1% RC 4801 did not show any improvement in wear performance compared to neat PEG 200 + 1% RC 4801. PEG 200 + 2% [C<sub>6</sub>mim][TfO] + 1%RC 4801 allowed for a decrease in wear up to ~ 76% and PEG 200 + 2% [C<sub>6</sub>-4-pic][TfO] + 1%RC 4801 up to ~ 46% when compared with neat PEG 200 + 1% RC 4801. Optical microscopy images suggest the formation of an adsorbed layer, which was further supported by chemical analysis via x-ray photoelectron spectroscopy (XPS) data for [C<sub>6</sub>mim][TfO].</p><h3>Graphical abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":806,"journal":{"name":"Tribology Letters","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11249-024-01898-6.pdf","citationCount":"0","resultStr":"{\"title\":\"Ionic Liquids as Extreme Pressure Additives for Bearing Steel Applications\",\"authors\":\"Mariana T. Donato, Pranjal Nautiyal, Jonas Deuermeier, Luís C. Branco, Benilde Saramago, Rogério Colaço, Robert W. Carpick\",\"doi\":\"10.1007/s11249-024-01898-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The protection of steel surfaces from wear under extreme pressure conditions is of major importance in several industries as it provides better performance and longer life of machinery. The motivation for this work was to study the lubrication of steel by ionic liquids (ILs), which have recently emerged as greener alternatives to commercial lubricants and additives. Three ILs based on sulfur-containing anions, used as 2-wt% additives in polyethylene glycol base oil (MW 200; PEG 200), were tested in the lubrication of ASTM 52100 bearing steel contacts in extreme pressure conditions (under mixed lubrication with a Hertzian pressure of 1.12 GPa) using a mini traction machine (MTM). Due to the poor resistance to corrosion of bearing steel, a semi-ester of succinic acid derivative corrosion inhibitor (Lanxess RC 4801) was added to the mixtures at a 1 wt% concentration. The ILs 1-hexyl-methylimidazolium trifluoromethanesulfonate ([C<sub>6</sub>mim][TfO]) and 1-hexyl-4-picolinium trifluoromethanesulfonate ([C<sub>6</sub>-4-pic][TfO]) revealed promising results in terms of surface protection of bearing steel. In contrast, 4-picolinium hydrogen sulfate ([4-picH][HSO<sub>4</sub>]) as 2-wt% additive to PEG 200 + 1% RC 4801 did not show any improvement in wear performance compared to neat PEG 200 + 1% RC 4801. PEG 200 + 2% [C<sub>6</sub>mim][TfO] + 1%RC 4801 allowed for a decrease in wear up to ~ 76% and PEG 200 + 2% [C<sub>6</sub>-4-pic][TfO] + 1%RC 4801 up to ~ 46% when compared with neat PEG 200 + 1% RC 4801. Optical microscopy images suggest the formation of an adsorbed layer, which was further supported by chemical analysis via x-ray photoelectron spectroscopy (XPS) data for [C<sub>6</sub>mim][TfO].</p><h3>Graphical abstract</h3>\\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":806,\"journal\":{\"name\":\"Tribology Letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-08-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s11249-024-01898-6.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tribology Letters\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11249-024-01898-6\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tribology Letters","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11249-024-01898-6","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Ionic Liquids as Extreme Pressure Additives for Bearing Steel Applications
The protection of steel surfaces from wear under extreme pressure conditions is of major importance in several industries as it provides better performance and longer life of machinery. The motivation for this work was to study the lubrication of steel by ionic liquids (ILs), which have recently emerged as greener alternatives to commercial lubricants and additives. Three ILs based on sulfur-containing anions, used as 2-wt% additives in polyethylene glycol base oil (MW 200; PEG 200), were tested in the lubrication of ASTM 52100 bearing steel contacts in extreme pressure conditions (under mixed lubrication with a Hertzian pressure of 1.12 GPa) using a mini traction machine (MTM). Due to the poor resistance to corrosion of bearing steel, a semi-ester of succinic acid derivative corrosion inhibitor (Lanxess RC 4801) was added to the mixtures at a 1 wt% concentration. The ILs 1-hexyl-methylimidazolium trifluoromethanesulfonate ([C6mim][TfO]) and 1-hexyl-4-picolinium trifluoromethanesulfonate ([C6-4-pic][TfO]) revealed promising results in terms of surface protection of bearing steel. In contrast, 4-picolinium hydrogen sulfate ([4-picH][HSO4]) as 2-wt% additive to PEG 200 + 1% RC 4801 did not show any improvement in wear performance compared to neat PEG 200 + 1% RC 4801. PEG 200 + 2% [C6mim][TfO] + 1%RC 4801 allowed for a decrease in wear up to ~ 76% and PEG 200 + 2% [C6-4-pic][TfO] + 1%RC 4801 up to ~ 46% when compared with neat PEG 200 + 1% RC 4801. Optical microscopy images suggest the formation of an adsorbed layer, which was further supported by chemical analysis via x-ray photoelectron spectroscopy (XPS) data for [C6mim][TfO].
期刊介绍:
Tribology Letters is devoted to the development of the science of tribology and its applications, particularly focusing on publishing high-quality papers at the forefront of tribological science and that address the fundamentals of friction, lubrication, wear, or adhesion. The journal facilitates communication and exchange of seminal ideas among thousands of practitioners who are engaged worldwide in the pursuit of tribology-based science and technology.