Alisha Verma, Nitesh Kumar, Rinki Agarwal, Sonal Chauhan, V. K. Jain, Sucheta Sengupta
{"title":"具有增强抗菌性能的氧化锌-银纳米复合材料的制备和评估及其潜在应用","authors":"Alisha Verma, Nitesh Kumar, Rinki Agarwal, Sonal Chauhan, V. K. Jain, Sucheta Sengupta","doi":"10.1007/s11144-024-02699-7","DOIUrl":null,"url":null,"abstract":"<div><p>In response to the pressing challenges in various fields, particularly healthcare and infection prevention, this research explores the synthesis, characterization, and assessment of ZnO–Ag nanocomposites for antibacterial properties. Employing a solvothermal method, silver nanoparticles were incorporated into hydrothermally synthesized zinc oxide nanorods, aiming to harness their synergistic antibacterial effects. The research systematically analyses the nanocomposites, unveiling their structural and compositional features. Antibacterial potential is evaluated through agar well diffusion assay, demonstrating increased efficacy against diverse bacteria. With implications extending to biomedical applications, these nanocomposites emerge as promising contenders for infection prevention in healthcare settings.</p></div>","PeriodicalId":750,"journal":{"name":"Reaction Kinetics, Mechanisms and Catalysis","volume":"137 6","pages":"3037 - 3045"},"PeriodicalIF":1.7000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fabrication and evaluation of ZnO–Ag nanocomposites exhibiting enhanced antibacterial properties and their potential applications\",\"authors\":\"Alisha Verma, Nitesh Kumar, Rinki Agarwal, Sonal Chauhan, V. K. Jain, Sucheta Sengupta\",\"doi\":\"10.1007/s11144-024-02699-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In response to the pressing challenges in various fields, particularly healthcare and infection prevention, this research explores the synthesis, characterization, and assessment of ZnO–Ag nanocomposites for antibacterial properties. Employing a solvothermal method, silver nanoparticles were incorporated into hydrothermally synthesized zinc oxide nanorods, aiming to harness their synergistic antibacterial effects. The research systematically analyses the nanocomposites, unveiling their structural and compositional features. Antibacterial potential is evaluated through agar well diffusion assay, demonstrating increased efficacy against diverse bacteria. With implications extending to biomedical applications, these nanocomposites emerge as promising contenders for infection prevention in healthcare settings.</p></div>\",\"PeriodicalId\":750,\"journal\":{\"name\":\"Reaction Kinetics, Mechanisms and Catalysis\",\"volume\":\"137 6\",\"pages\":\"3037 - 3045\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Reaction Kinetics, Mechanisms and Catalysis\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11144-024-02699-7\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reaction Kinetics, Mechanisms and Catalysis","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s11144-024-02699-7","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Fabrication and evaluation of ZnO–Ag nanocomposites exhibiting enhanced antibacterial properties and their potential applications
In response to the pressing challenges in various fields, particularly healthcare and infection prevention, this research explores the synthesis, characterization, and assessment of ZnO–Ag nanocomposites for antibacterial properties. Employing a solvothermal method, silver nanoparticles were incorporated into hydrothermally synthesized zinc oxide nanorods, aiming to harness their synergistic antibacterial effects. The research systematically analyses the nanocomposites, unveiling their structural and compositional features. Antibacterial potential is evaluated through agar well diffusion assay, demonstrating increased efficacy against diverse bacteria. With implications extending to biomedical applications, these nanocomposites emerge as promising contenders for infection prevention in healthcare settings.
期刊介绍:
Reaction Kinetics, Mechanisms and Catalysis is a medium for original contributions in the following fields:
-kinetics of homogeneous reactions in gas, liquid and solid phase;
-Homogeneous catalysis;
-Heterogeneous catalysis;
-Adsorption in heterogeneous catalysis;
-Transport processes related to reaction kinetics and catalysis;
-Preparation and study of catalysts;
-Reactors and apparatus.
Reaction Kinetics, Mechanisms and Catalysis was formerly published under the title Reaction Kinetics and Catalysis Letters.