具有增强抗菌性能的氧化锌-银纳米复合材料的制备和评估及其潜在应用

IF 1.7 4区 化学 Q4 CHEMISTRY, PHYSICAL Reaction Kinetics, Mechanisms and Catalysis Pub Date : 2024-08-01 DOI:10.1007/s11144-024-02699-7
Alisha Verma, Nitesh Kumar, Rinki Agarwal, Sonal Chauhan, V. K. Jain, Sucheta Sengupta
{"title":"具有增强抗菌性能的氧化锌-银纳米复合材料的制备和评估及其潜在应用","authors":"Alisha Verma, Nitesh Kumar, Rinki Agarwal, Sonal Chauhan, V. K. Jain, Sucheta Sengupta","doi":"10.1007/s11144-024-02699-7","DOIUrl":null,"url":null,"abstract":"<p>In response to the pressing challenges in various fields, particularly healthcare and infection prevention, this research explores the synthesis, characterization, and assessment of ZnO–Ag nanocomposites for antibacterial properties. Employing a solvothermal method, silver nanoparticles were incorporated into hydrothermally synthesized zinc oxide nanorods, aiming to harness their synergistic antibacterial effects. The research systematically analyses the nanocomposites, unveiling their structural and compositional features. Antibacterial potential is evaluated through agar well diffusion assay, demonstrating increased efficacy against diverse bacteria. With implications extending to biomedical applications, these nanocomposites emerge as promising contenders for infection prevention in healthcare settings.</p>","PeriodicalId":750,"journal":{"name":"Reaction Kinetics, Mechanisms and Catalysis","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fabrication and evaluation of ZnO–Ag nanocomposites exhibiting enhanced antibacterial properties and their potential applications\",\"authors\":\"Alisha Verma, Nitesh Kumar, Rinki Agarwal, Sonal Chauhan, V. K. Jain, Sucheta Sengupta\",\"doi\":\"10.1007/s11144-024-02699-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In response to the pressing challenges in various fields, particularly healthcare and infection prevention, this research explores the synthesis, characterization, and assessment of ZnO–Ag nanocomposites for antibacterial properties. Employing a solvothermal method, silver nanoparticles were incorporated into hydrothermally synthesized zinc oxide nanorods, aiming to harness their synergistic antibacterial effects. The research systematically analyses the nanocomposites, unveiling their structural and compositional features. Antibacterial potential is evaluated through agar well diffusion assay, demonstrating increased efficacy against diverse bacteria. With implications extending to biomedical applications, these nanocomposites emerge as promising contenders for infection prevention in healthcare settings.</p>\",\"PeriodicalId\":750,\"journal\":{\"name\":\"Reaction Kinetics, Mechanisms and Catalysis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Reaction Kinetics, Mechanisms and Catalysis\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1007/s11144-024-02699-7\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reaction Kinetics, Mechanisms and Catalysis","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s11144-024-02699-7","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

为了应对各个领域,尤其是医疗保健和感染预防领域面临的紧迫挑战,本研究探讨了氧化锌-银纳米复合材料的合成、表征和抗菌性能评估。研究采用溶热法将银纳米粒子与水热法合成的氧化锌纳米棒结合在一起,旨在利用它们的协同抗菌效果。研究对纳米复合材料进行了系统分析,揭示了其结构和组成特征。通过琼脂井扩散试验对抗菌潜力进行了评估,结果表明纳米复合材料对多种细菌具有更强的功效。这些纳米复合材料对生物医学应用具有深远影响,有望成为医疗机构预防感染的有力竞争者。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Fabrication and evaluation of ZnO–Ag nanocomposites exhibiting enhanced antibacterial properties and their potential applications

In response to the pressing challenges in various fields, particularly healthcare and infection prevention, this research explores the synthesis, characterization, and assessment of ZnO–Ag nanocomposites for antibacterial properties. Employing a solvothermal method, silver nanoparticles were incorporated into hydrothermally synthesized zinc oxide nanorods, aiming to harness their synergistic antibacterial effects. The research systematically analyses the nanocomposites, unveiling their structural and compositional features. Antibacterial potential is evaluated through agar well diffusion assay, demonstrating increased efficacy against diverse bacteria. With implications extending to biomedical applications, these nanocomposites emerge as promising contenders for infection prevention in healthcare settings.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.30
自引率
5.60%
发文量
201
审稿时长
2.8 months
期刊介绍: Reaction Kinetics, Mechanisms and Catalysis is a medium for original contributions in the following fields: -kinetics of homogeneous reactions in gas, liquid and solid phase; -Homogeneous catalysis; -Heterogeneous catalysis; -Adsorption in heterogeneous catalysis; -Transport processes related to reaction kinetics and catalysis; -Preparation and study of catalysts; -Reactors and apparatus. Reaction Kinetics, Mechanisms and Catalysis was formerly published under the title Reaction Kinetics and Catalysis Letters.
期刊最新文献
A sustainable production of lignin-based activated carbon from sawdust for efficient removal of Basic Blue 9 dye from water systems Julian Hirniak, an early proponent of periodic chemical reactions Photo-catalytıc degradatıon of paracetamol using a novel photocatalyst Zr–WO3 doped charcoal Hydrophilic treatment of carbon paper for anodic porous transport layer in proton exchange membrane water electrolyzer Solid-state synthesis of La0.75Gd0.25FeO3 nanoparticles for the enhanced photodegradation of methylene blue under sunlight irradiation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1