需要关注基因变异的完善

Omar Abdelwahab, Davoud Torkamaneh
{"title":"需要关注基因变异的完善","authors":"Omar Abdelwahab, Davoud Torkamaneh","doi":"arxiv-2408.00659","DOIUrl":null,"url":null,"abstract":"Variant calling refinement is crucial for distinguishing true genetic\nvariants from technical artifacts in high-throughput sequencing data. Manual\nreview is time-consuming while heuristic filtering often lacks optimal\nsolutions. Traditional variant calling methods often struggle with accuracy,\nespecially in regions of low read coverage, leading to false-positive or\nfalse-negative calls. Here, we introduce VariantTransformer, a\nTransformer-based deep learning model, designed to automate variant calling\nrefinement directly from VCF files in low-coverage data (10-15X).\nVariantTransformer, trained on two million variants, including SNPs and short\nInDels, from low-coverage sequencing data, achieved an accuracy of 89.26% and a\nROC AUC of 0.88. When integrated into conventional variant calling pipelines,\nVariantTransformer outperformed traditional heuristic filters and approached\nthe performance of state-of-the-art AI-based variant callers like DeepVariant.\nComparative analysis demonstrated VariantTransformer's superiority in\nfunctionality, variant type coverage, training size, and input data type.\nVariantTransformer represents a significant advancement in variant calling\nrefinement for low-coverage genomic studies.","PeriodicalId":501070,"journal":{"name":"arXiv - QuanBio - Genomics","volume":"6 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Refinement of genetic variants needs attention\",\"authors\":\"Omar Abdelwahab, Davoud Torkamaneh\",\"doi\":\"arxiv-2408.00659\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Variant calling refinement is crucial for distinguishing true genetic\\nvariants from technical artifacts in high-throughput sequencing data. Manual\\nreview is time-consuming while heuristic filtering often lacks optimal\\nsolutions. Traditional variant calling methods often struggle with accuracy,\\nespecially in regions of low read coverage, leading to false-positive or\\nfalse-negative calls. Here, we introduce VariantTransformer, a\\nTransformer-based deep learning model, designed to automate variant calling\\nrefinement directly from VCF files in low-coverage data (10-15X).\\nVariantTransformer, trained on two million variants, including SNPs and short\\nInDels, from low-coverage sequencing data, achieved an accuracy of 89.26% and a\\nROC AUC of 0.88. When integrated into conventional variant calling pipelines,\\nVariantTransformer outperformed traditional heuristic filters and approached\\nthe performance of state-of-the-art AI-based variant callers like DeepVariant.\\nComparative analysis demonstrated VariantTransformer's superiority in\\nfunctionality, variant type coverage, training size, and input data type.\\nVariantTransformer represents a significant advancement in variant calling\\nrefinement for low-coverage genomic studies.\",\"PeriodicalId\":501070,\"journal\":{\"name\":\"arXiv - QuanBio - Genomics\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - QuanBio - Genomics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.00659\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuanBio - Genomics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.00659","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

要从高通量测序数据中区分出真正的遗传变异和技术假象,变异调用的完善至关重要。人工审查非常耗时,而启发式过滤往往缺乏最佳解决方案。传统的变异体调用方法在准确性方面往往存在困难,尤其是在低读数覆盖率区域,从而导致假阳性或假阴性调用。在这里,我们介绍了VariantTransformer,这是一种基于Transformer的深度学习模型,旨在直接从低覆盖率数据(10-15X)的VCF文件中自动进行变体调用细化。VariantTransformer在低覆盖率测序数据的200万个变体(包括SNPs和shortInDels)上进行了训练,准确率达到了89.26%,ROC AUC为0.88。比较分析表明,VariantTransformer 在功能、变异类型覆盖率、训练规模和输入数据类型方面都具有优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Refinement of genetic variants needs attention
Variant calling refinement is crucial for distinguishing true genetic variants from technical artifacts in high-throughput sequencing data. Manual review is time-consuming while heuristic filtering often lacks optimal solutions. Traditional variant calling methods often struggle with accuracy, especially in regions of low read coverage, leading to false-positive or false-negative calls. Here, we introduce VariantTransformer, a Transformer-based deep learning model, designed to automate variant calling refinement directly from VCF files in low-coverage data (10-15X). VariantTransformer, trained on two million variants, including SNPs and short InDels, from low-coverage sequencing data, achieved an accuracy of 89.26% and a ROC AUC of 0.88. When integrated into conventional variant calling pipelines, VariantTransformer outperformed traditional heuristic filters and approached the performance of state-of-the-art AI-based variant callers like DeepVariant. Comparative analysis demonstrated VariantTransformer's superiority in functionality, variant type coverage, training size, and input data type. VariantTransformer represents a significant advancement in variant calling refinement for low-coverage genomic studies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Allium Vegetables Intake and Digestive System Cancer Risk: A Study Based on Mendelian Randomization, Network Pharmacology and Molecular Docking wgatools: an ultrafast toolkit for manipulating whole genome alignments Selecting Differential Splicing Methods: Practical Considerations Advancements in colored k-mer sets: essentials for the curious Advancements in practical k-mer sets: essentials for the curious
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1