完全支持、动态支持或紧凑支持的时空内核的兼容性

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Applied Bio Materials Pub Date : 2024-08-02 DOI:10.1002/mma.10379
Tarik Faouzi, Reinhard Furrer, Emilio Porcu
{"title":"完全支持、动态支持或紧凑支持的时空内核的兼容性","authors":"Tarik Faouzi, Reinhard Furrer, Emilio Porcu","doi":"10.1002/mma.10379","DOIUrl":null,"url":null,"abstract":"This paper deals with compatibility of space‐time kernels with (either) full, spatially dynamical, or space‐time compact support. We deal with the dilemma of statistical accuracy <jats:styled-content>versus</jats:styled-content> computational scalability, which are in a notorious trade‐off. Apparently, models with full support ensure maximal information but are computationally expensive, while compactly supported models achieve computational scalability at the expense of loss of information. Hence, an inspection of whether these models might be compatible is necessary. The criterion we use for such an inspection is based on equivalence of Gaussian measures. We provide sufficient conditions for space‐time compatibility. As a corollary, we deduce implications in terms of maximum likelihood estimation and misspecified kriging prediction under fixed domain asymptotics. Some results of independent interest relate about the space‐time spectrum associated with the classes of kernels proposed in the paper.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Compatibility of space‐time kernels with full, dynamical, or compact support\",\"authors\":\"Tarik Faouzi, Reinhard Furrer, Emilio Porcu\",\"doi\":\"10.1002/mma.10379\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper deals with compatibility of space‐time kernels with (either) full, spatially dynamical, or space‐time compact support. We deal with the dilemma of statistical accuracy <jats:styled-content>versus</jats:styled-content> computational scalability, which are in a notorious trade‐off. Apparently, models with full support ensure maximal information but are computationally expensive, while compactly supported models achieve computational scalability at the expense of loss of information. Hence, an inspection of whether these models might be compatible is necessary. The criterion we use for such an inspection is based on equivalence of Gaussian measures. We provide sufficient conditions for space‐time compatibility. As a corollary, we deduce implications in terms of maximum likelihood estimation and misspecified kriging prediction under fixed domain asymptotics. Some results of independent interest relate about the space‐time spectrum associated with the classes of kernels proposed in the paper.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-08-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1002/mma.10379\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1002/mma.10379","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

本文论述了具有全空间、空间动态或时空紧凑支持的时空核的兼容性。我们处理的是统计准确性与计算可扩展性之间的两难问题,两者之间存在着众所周知的权衡。显然,全支持模型能确保最大信息量,但计算成本高昂,而紧凑支持模型则以损失信息量为代价来实现计算可扩展性。因此,有必要对这些模型是否兼容进行检验。我们使用的检验标准是基于高斯度量的等价性。我们提供了时空兼容性的充分条件。作为推论,我们推导出了最大似然估计和定域渐近学下的失范克里金预测的含义。与本文提出的核类相关的时空谱方面的一些结果也引起了我们的兴趣。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Compatibility of space‐time kernels with full, dynamical, or compact support
This paper deals with compatibility of space‐time kernels with (either) full, spatially dynamical, or space‐time compact support. We deal with the dilemma of statistical accuracy versus computational scalability, which are in a notorious trade‐off. Apparently, models with full support ensure maximal information but are computationally expensive, while compactly supported models achieve computational scalability at the expense of loss of information. Hence, an inspection of whether these models might be compatible is necessary. The criterion we use for such an inspection is based on equivalence of Gaussian measures. We provide sufficient conditions for space‐time compatibility. As a corollary, we deduce implications in terms of maximum likelihood estimation and misspecified kriging prediction under fixed domain asymptotics. Some results of independent interest relate about the space‐time spectrum associated with the classes of kernels proposed in the paper.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊最新文献
A Systematic Review of Sleep Disturbance in Idiopathic Intracranial Hypertension. Advancing Patient Education in Idiopathic Intracranial Hypertension: The Promise of Large Language Models. Anti-Myelin-Associated Glycoprotein Neuropathy: Recent Developments. Approach to Managing the Initial Presentation of Multiple Sclerosis: A Worldwide Practice Survey. Association Between LACE+ Index Risk Category and 90-Day Mortality After Stroke.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1