不同电极不均匀性对锂离子电池电压响应影响的研究

IF 7.9 2区 综合性期刊 Q1 CHEMISTRY, MULTIDISCIPLINARY Cell Reports Physical Science Pub Date : 2024-08-02 DOI:10.1016/j.xcrp.2024.102138
{"title":"不同电极不均匀性对锂离子电池电压响应影响的研究","authors":"","doi":"10.1016/j.xcrp.2024.102138","DOIUrl":null,"url":null,"abstract":"<p>As commercial batteries and battery packs become larger and larger, one topic that is gaining interest is that of cell-to-cell variations and inhomogeneities. In this theoretical study, we use a degradation mode model along with a segmented cell approach to investigate the impact of different inhomogeneity modes on the performance of two typical Li-ion batteries. This unique approach shows that out of the nine considered modes (state of charge, rate, resistance, and capacity for each electrode as well as their offset), when at a mild level and randomly distributed, only three could affect performance, with two unlikely to happen in real cells because they would disappear during rest. Model results show that some of these inhomogeneities open the possibility of a snowball effect to induce local rate variations and lithiation inhomogeneities. Our study also shows that it is necessary to assess the level at which the paralleling occurs, electrode or full cell, as the model predicts an impact on how the current, and how much of it, is flowing within or in between the electrodes.</p>","PeriodicalId":9703,"journal":{"name":"Cell Reports Physical Science","volume":null,"pages":null},"PeriodicalIF":7.9000,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigation of the impact of different electrode inhomogeneities on the voltage response of Li-ion batteries\",\"authors\":\"\",\"doi\":\"10.1016/j.xcrp.2024.102138\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>As commercial batteries and battery packs become larger and larger, one topic that is gaining interest is that of cell-to-cell variations and inhomogeneities. In this theoretical study, we use a degradation mode model along with a segmented cell approach to investigate the impact of different inhomogeneity modes on the performance of two typical Li-ion batteries. This unique approach shows that out of the nine considered modes (state of charge, rate, resistance, and capacity for each electrode as well as their offset), when at a mild level and randomly distributed, only three could affect performance, with two unlikely to happen in real cells because they would disappear during rest. Model results show that some of these inhomogeneities open the possibility of a snowball effect to induce local rate variations and lithiation inhomogeneities. Our study also shows that it is necessary to assess the level at which the paralleling occurs, electrode or full cell, as the model predicts an impact on how the current, and how much of it, is flowing within or in between the electrodes.</p>\",\"PeriodicalId\":9703,\"journal\":{\"name\":\"Cell Reports Physical Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.9000,\"publicationDate\":\"2024-08-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell Reports Physical Science\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1016/j.xcrp.2024.102138\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Reports Physical Science","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1016/j.xcrp.2024.102138","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

随着商用电池和电池组的体积越来越大,电池单元之间的变化和不均匀性日益受到关注。在这项理论研究中,我们使用退化模式模型和分段电池方法来研究不同不均匀性模式对两种典型锂离子电池性能的影响。这种独特的方法表明,在所考虑的九种模式(每个电极的充电状态、速率、电阻和容量以及它们的偏移)中,当处于温和水平且随机分布时,只有三种模式会影响性能,其中两种在实际电池中不太可能发生,因为它们会在静止时消失。模型结果表明,其中一些不均匀性可能会产生雪球效应,诱发局部速率变化和锂化不均匀性。我们的研究还表明,有必要评估发生并联的层次,是电极还是整个细胞,因为模型预测会影响电流在电极内或电极间流动的方式和程度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Investigation of the impact of different electrode inhomogeneities on the voltage response of Li-ion batteries

As commercial batteries and battery packs become larger and larger, one topic that is gaining interest is that of cell-to-cell variations and inhomogeneities. In this theoretical study, we use a degradation mode model along with a segmented cell approach to investigate the impact of different inhomogeneity modes on the performance of two typical Li-ion batteries. This unique approach shows that out of the nine considered modes (state of charge, rate, resistance, and capacity for each electrode as well as their offset), when at a mild level and randomly distributed, only three could affect performance, with two unlikely to happen in real cells because they would disappear during rest. Model results show that some of these inhomogeneities open the possibility of a snowball effect to induce local rate variations and lithiation inhomogeneities. Our study also shows that it is necessary to assess the level at which the paralleling occurs, electrode or full cell, as the model predicts an impact on how the current, and how much of it, is flowing within or in between the electrodes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cell Reports Physical Science
Cell Reports Physical Science Energy-Energy (all)
CiteScore
11.40
自引率
2.20%
发文量
388
审稿时长
62 days
期刊介绍: Cell Reports Physical Science, a premium open-access journal from Cell Press, features high-quality, cutting-edge research spanning the physical sciences. It serves as an open forum fostering collaboration among physical scientists while championing open science principles. Published works must signify significant advancements in fundamental insight or technological applications within fields such as chemistry, physics, materials science, energy science, engineering, and related interdisciplinary studies. In addition to longer articles, the journal considers impactful short-form reports and short reviews covering recent literature in emerging fields. Continually adapting to the evolving open science landscape, the journal reviews its policies to align with community consensus and best practices.
期刊最新文献
Paper microfluidic sentinel sensors enable rapid and on-site wastewater surveillance in community settings Catalyzing deep decarbonization with federated battery diagnosis and prognosis for better data management in energy storage systems 4.8-V all-solid-state garnet-based lithium-metal batteries with stable interface Deformation of collagen-based tissues investigated using a systematic review and meta-analysis of synchrotron x-ray scattering studies Catalysis for plastic deconstruction and upcycling
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1