{"title":"从同分异构的角度分析 6-(1H-苯并[d]咪唑-2-基)-1-苯基-己-1-酮的意外形成及其在溶液和固态中的结构","authors":"Ryszard B. Nazarski, Małgorzata Domagała","doi":"10.3390/cryst14080704","DOIUrl":null,"url":null,"abstract":"The structure of the title compound (4d), unexpectedly obtained in the reaction between o-phenylenediamine and 2-benzoylcyclohexanone instead of the target 3H-benzo[b][1,4]diazepine derivative 3d, was determined spectroscopically in solution and by a single-crystal X-ray diffraction (XRD) study. It involves two enantiomeric rotamers, called forms D and U, of which the structure was elucidated based on NMR spectra measured and predicted in DFT-GIAO calculations. An averaging of δCs for all tautomeric positions in the benzimidazole part of the 4d hydrate studied in wet (probably slightly acidic) CDCl3 unambiguously indicates tautomeric exchange in its imidazole unit. An XRD analysis of this material confirms the existence of only one tautomer in the solid phase. The non-covalent interactions forming between molecules of water and benzimidazole derivative are shorter than the sum of van der Waals radii and create an infinite-chain hydrogen bond motif along the b-axis. A possible mechanism for the observed cyclocondensation is also proposed.","PeriodicalId":10855,"journal":{"name":"Crystals","volume":"7 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unexpected Formation of 6-(1H-Benzo[d]imidazol-2-yl)-1-phenyl-hexan-1-one and Its Structure in Solution and Solid State Analyzed in the Context of Tautomerism\",\"authors\":\"Ryszard B. Nazarski, Małgorzata Domagała\",\"doi\":\"10.3390/cryst14080704\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The structure of the title compound (4d), unexpectedly obtained in the reaction between o-phenylenediamine and 2-benzoylcyclohexanone instead of the target 3H-benzo[b][1,4]diazepine derivative 3d, was determined spectroscopically in solution and by a single-crystal X-ray diffraction (XRD) study. It involves two enantiomeric rotamers, called forms D and U, of which the structure was elucidated based on NMR spectra measured and predicted in DFT-GIAO calculations. An averaging of δCs for all tautomeric positions in the benzimidazole part of the 4d hydrate studied in wet (probably slightly acidic) CDCl3 unambiguously indicates tautomeric exchange in its imidazole unit. An XRD analysis of this material confirms the existence of only one tautomer in the solid phase. The non-covalent interactions forming between molecules of water and benzimidazole derivative are shorter than the sum of van der Waals radii and create an infinite-chain hydrogen bond motif along the b-axis. A possible mechanism for the observed cyclocondensation is also proposed.\",\"PeriodicalId\":10855,\"journal\":{\"name\":\"Crystals\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-08-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Crystals\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.3390/cryst14080704\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CRYSTALLOGRAPHY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Crystals","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/cryst14080704","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CRYSTALLOGRAPHY","Score":null,"Total":0}
引用次数: 0
摘要
通过溶液光谱和单晶 X 射线衍射 (XRD) 研究,确定了在邻苯二胺和 2-苯甲酰基环己酮反应中意外得到的标题化合物 (4d) 的结构,而不是目标 3H-苯并[b][1,4]二氮杂卓衍生物 3d。该衍生物包含两种对映异构体,分别称为 D 型和 U 型,其结构是根据 DFT-GIAO 计算所测得和预测的核磁共振光谱而阐明的。在湿的(可能是微酸性的)CDCl3 中研究了 4d 水合物苯并咪唑部分的所有同分异构体位置的 δCs 平均值,结果明确表明其咪唑单元中存在同分异构体交换。对这种材料的 XRD 分析证实,固相中只存在一种同分异构体。水分子和苯并咪唑衍生物之间形成的非共价相互作用比范德华半径之和还要短,并沿着 b 轴形成了无限链氢键图案。此外,还提出了观察到的环缩合现象的可能机理。
Unexpected Formation of 6-(1H-Benzo[d]imidazol-2-yl)-1-phenyl-hexan-1-one and Its Structure in Solution and Solid State Analyzed in the Context of Tautomerism
The structure of the title compound (4d), unexpectedly obtained in the reaction between o-phenylenediamine and 2-benzoylcyclohexanone instead of the target 3H-benzo[b][1,4]diazepine derivative 3d, was determined spectroscopically in solution and by a single-crystal X-ray diffraction (XRD) study. It involves two enantiomeric rotamers, called forms D and U, of which the structure was elucidated based on NMR spectra measured and predicted in DFT-GIAO calculations. An averaging of δCs for all tautomeric positions in the benzimidazole part of the 4d hydrate studied in wet (probably slightly acidic) CDCl3 unambiguously indicates tautomeric exchange in its imidazole unit. An XRD analysis of this material confirms the existence of only one tautomer in the solid phase. The non-covalent interactions forming between molecules of water and benzimidazole derivative are shorter than the sum of van der Waals radii and create an infinite-chain hydrogen bond motif along the b-axis. A possible mechanism for the observed cyclocondensation is also proposed.
期刊介绍:
Crystals (ISSN 2073-4352) is an open access journal that covers all aspects of crystalline material research. Crystals can act as a reference, and as a publication resource, to the community. It publishes reviews, regular research articles, and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on article length. Full experimental details must be provided to enable the results to be reproduced. Crystals provides a forum for the advancement of our understanding of the nucleation, growth, processing, and characterization of crystalline materials. Their mechanical, chemical, electronic, magnetic, and optical properties, and their diverse applications, are all considered to be of importance.