{"title":"来自假真空岛的原始黑洞和曲率扰动","authors":"Rong-Gen Cai, Yu-Shi Hao, Shao-Jiang Wang","doi":"10.1007/s11433-024-2416-3","DOIUrl":null,"url":null,"abstract":"<div><p>Recently, much attention has been focused on the false vacuum islands that are flooded by an expanding ocean of true-vacuum bubbles slightly later than most of the other parts of the world. These delayed decay regions will accumulate locally larger vacuum energy density by staying in the false vacuum longer than those already transited into the true vacuum. A false vacuum island with thus acquired density contrast of a super-horizon size will evolve locally from radiation dominance to vacuum dominance, creating a local baby Universe that can be regarded effectively as a local closed Universe. If such density contrasts of super-horizon sizes can ever grow large enough to exceed the threshold of gravitational collapse, primordial black holes will form similar to those collapsing curvature perturbations on super-horizon scales induced by small-scale enhancements during inflation. If not, such density contrasts can still induce curvature perturbations potentially observable today. In this paper, we revisit and elaborate on the generations of primordial black holes and curvature perturbations from delayed-decayed false vacuum islands during asynchronous first-order phase transitions with fitting formulas convenient for future model-independent studies.</p></div>","PeriodicalId":774,"journal":{"name":"Science China Physics, Mechanics & Astronomy","volume":"67 9","pages":""},"PeriodicalIF":6.4000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Primordial black holes and curvature perturbations from false vacuum islands\",\"authors\":\"Rong-Gen Cai, Yu-Shi Hao, Shao-Jiang Wang\",\"doi\":\"10.1007/s11433-024-2416-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Recently, much attention has been focused on the false vacuum islands that are flooded by an expanding ocean of true-vacuum bubbles slightly later than most of the other parts of the world. These delayed decay regions will accumulate locally larger vacuum energy density by staying in the false vacuum longer than those already transited into the true vacuum. A false vacuum island with thus acquired density contrast of a super-horizon size will evolve locally from radiation dominance to vacuum dominance, creating a local baby Universe that can be regarded effectively as a local closed Universe. If such density contrasts of super-horizon sizes can ever grow large enough to exceed the threshold of gravitational collapse, primordial black holes will form similar to those collapsing curvature perturbations on super-horizon scales induced by small-scale enhancements during inflation. If not, such density contrasts can still induce curvature perturbations potentially observable today. In this paper, we revisit and elaborate on the generations of primordial black holes and curvature perturbations from delayed-decayed false vacuum islands during asynchronous first-order phase transitions with fitting formulas convenient for future model-independent studies.</p></div>\",\"PeriodicalId\":774,\"journal\":{\"name\":\"Science China Physics, Mechanics & Astronomy\",\"volume\":\"67 9\",\"pages\":\"\"},\"PeriodicalIF\":6.4000,\"publicationDate\":\"2024-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science China Physics, Mechanics & Astronomy\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11433-024-2416-3\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science China Physics, Mechanics & Astronomy","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s11433-024-2416-3","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Primordial black holes and curvature perturbations from false vacuum islands
Recently, much attention has been focused on the false vacuum islands that are flooded by an expanding ocean of true-vacuum bubbles slightly later than most of the other parts of the world. These delayed decay regions will accumulate locally larger vacuum energy density by staying in the false vacuum longer than those already transited into the true vacuum. A false vacuum island with thus acquired density contrast of a super-horizon size will evolve locally from radiation dominance to vacuum dominance, creating a local baby Universe that can be regarded effectively as a local closed Universe. If such density contrasts of super-horizon sizes can ever grow large enough to exceed the threshold of gravitational collapse, primordial black holes will form similar to those collapsing curvature perturbations on super-horizon scales induced by small-scale enhancements during inflation. If not, such density contrasts can still induce curvature perturbations potentially observable today. In this paper, we revisit and elaborate on the generations of primordial black holes and curvature perturbations from delayed-decayed false vacuum islands during asynchronous first-order phase transitions with fitting formulas convenient for future model-independent studies.
期刊介绍:
Science China Physics, Mechanics & Astronomy, an academic journal cosponsored by the Chinese Academy of Sciences and the National Natural Science Foundation of China, and published by Science China Press, is committed to publishing high-quality, original results in both basic and applied research.
Science China Physics, Mechanics & Astronomy, is published in both print and electronic forms. It is indexed by Science Citation Index.
Categories of articles:
Reviews summarize representative results and achievements in a particular topic or an area, comment on the current state of research, and advise on the research directions. The author’s own opinion and related discussion is requested.
Research papers report on important original results in all areas of physics, mechanics and astronomy.
Brief reports present short reports in a timely manner of the latest important results.