A. Amala Jeya Ranchani, V. S. Jeba Reeda, P. Divya, R. Suja, V. Bena Jothy
{"title":"利用 DFT 分析利用吡啶衍生物的特性,在超级电容器领域取得突破性进展","authors":"A. Amala Jeya Ranchani, V. S. Jeba Reeda, P. Divya, R. Suja, V. Bena Jothy","doi":"10.1007/s11581-024-05736-6","DOIUrl":null,"url":null,"abstract":"<div><p>Using non-renewable resources in energy storage has spurred the development of supercapacitors, widely applied in electric vehicles and portable electronic devices for their swift charge–discharge cycles and high-power density. Depending on their materials and energy-storage methods, supercapacitors are classified as either electrochemical double-layer capacitors or pseudocapacitors. This study synthesizes a bis(dimethyl pyridine oxalic acid)oxalate (BDPO) and evaluates its electrochemical properties through impedance analysis. The results reveal promising performance, with specific capacitance values peaking at 330.52 g/F. Scan rate optimization at 0.05 V/s proves crucial for the supercapacitor system’s highest efficient charge storage capacity. Additionally, structural confirmational analysis is done by optimized geometry, NMR analysis, and vibrational analysis also interactions are confirmed through ELF, LOL, AIM, and NBO analysis. Following an NBO assessment, crucial donor–acceptor interactions were examined. Notably, with stabilization energies of 33.36, 22.59, 10.24, 3.24, 1.73, 1.18, and 1.09 kcal/mol are caused by hyperconjugative contacts in lone pair LP (O<sub>35</sub>) → σ*(N<sub>14</sub>—H<sub>15</sub>), LP (O<sub>41</sub>) → σ*(N<sub>29</sub>—H<sub>42</sub>), LP (O<sub>40</sub>) → σ*(O<sub>33</sub>—H<sub>34</sub>), LP (O<sub>43</sub>) → σ*(C<sub>1</sub>—H<sub>2</sub>), LP (O<sub>48</sub>) → σ*(C<sub>8</sub>—H<sub>9</sub>), LP (O<sub>36</sub>) → σ*(C<sub>25</sub>—H<sub>28</sub>), LP (O<sub>43</sub>) → σ*(C<sub>16</sub>—H<sub>17</sub>) significantly influenced various topological analyses, including AIM, ELF, LOL, RDG, and IGM, producing favorable outcomes.</p></div>","PeriodicalId":599,"journal":{"name":"Ionics","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Leveraging the properties of pyridine derivatives using DFT analysis to achieve breakthroughs in supercapacitance advancements\",\"authors\":\"A. Amala Jeya Ranchani, V. S. Jeba Reeda, P. Divya, R. Suja, V. Bena Jothy\",\"doi\":\"10.1007/s11581-024-05736-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Using non-renewable resources in energy storage has spurred the development of supercapacitors, widely applied in electric vehicles and portable electronic devices for their swift charge–discharge cycles and high-power density. Depending on their materials and energy-storage methods, supercapacitors are classified as either electrochemical double-layer capacitors or pseudocapacitors. This study synthesizes a bis(dimethyl pyridine oxalic acid)oxalate (BDPO) and evaluates its electrochemical properties through impedance analysis. The results reveal promising performance, with specific capacitance values peaking at 330.52 g/F. Scan rate optimization at 0.05 V/s proves crucial for the supercapacitor system’s highest efficient charge storage capacity. Additionally, structural confirmational analysis is done by optimized geometry, NMR analysis, and vibrational analysis also interactions are confirmed through ELF, LOL, AIM, and NBO analysis. Following an NBO assessment, crucial donor–acceptor interactions were examined. Notably, with stabilization energies of 33.36, 22.59, 10.24, 3.24, 1.73, 1.18, and 1.09 kcal/mol are caused by hyperconjugative contacts in lone pair LP (O<sub>35</sub>) → σ*(N<sub>14</sub>—H<sub>15</sub>), LP (O<sub>41</sub>) → σ*(N<sub>29</sub>—H<sub>42</sub>), LP (O<sub>40</sub>) → σ*(O<sub>33</sub>—H<sub>34</sub>), LP (O<sub>43</sub>) → σ*(C<sub>1</sub>—H<sub>2</sub>), LP (O<sub>48</sub>) → σ*(C<sub>8</sub>—H<sub>9</sub>), LP (O<sub>36</sub>) → σ*(C<sub>25</sub>—H<sub>28</sub>), LP (O<sub>43</sub>) → σ*(C<sub>16</sub>—H<sub>17</sub>) significantly influenced various topological analyses, including AIM, ELF, LOL, RDG, and IGM, producing favorable outcomes.</p></div>\",\"PeriodicalId\":599,\"journal\":{\"name\":\"Ionics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-08-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ionics\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11581-024-05736-6\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ionics","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s11581-024-05736-6","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Leveraging the properties of pyridine derivatives using DFT analysis to achieve breakthroughs in supercapacitance advancements
Using non-renewable resources in energy storage has spurred the development of supercapacitors, widely applied in electric vehicles and portable electronic devices for their swift charge–discharge cycles and high-power density. Depending on their materials and energy-storage methods, supercapacitors are classified as either electrochemical double-layer capacitors or pseudocapacitors. This study synthesizes a bis(dimethyl pyridine oxalic acid)oxalate (BDPO) and evaluates its electrochemical properties through impedance analysis. The results reveal promising performance, with specific capacitance values peaking at 330.52 g/F. Scan rate optimization at 0.05 V/s proves crucial for the supercapacitor system’s highest efficient charge storage capacity. Additionally, structural confirmational analysis is done by optimized geometry, NMR analysis, and vibrational analysis also interactions are confirmed through ELF, LOL, AIM, and NBO analysis. Following an NBO assessment, crucial donor–acceptor interactions were examined. Notably, with stabilization energies of 33.36, 22.59, 10.24, 3.24, 1.73, 1.18, and 1.09 kcal/mol are caused by hyperconjugative contacts in lone pair LP (O35) → σ*(N14—H15), LP (O41) → σ*(N29—H42), LP (O40) → σ*(O33—H34), LP (O43) → σ*(C1—H2), LP (O48) → σ*(C8—H9), LP (O36) → σ*(C25—H28), LP (O43) → σ*(C16—H17) significantly influenced various topological analyses, including AIM, ELF, LOL, RDG, and IGM, producing favorable outcomes.
期刊介绍:
Ionics is publishing original results in the fields of science and technology of ionic motion. This includes theoretical, experimental and practical work on electrolytes, electrode, ionic/electronic interfaces, ionic transport aspects of corrosion, galvanic cells, e.g. for thermodynamic and kinetic studies, batteries, fuel cells, sensors and electrochromics. Fast solid ionic conductors are presently providing new opportunities in view of several advantages, in addition to conventional liquid electrolytes.