强激光与双层薄固体靶相互作用产生的增强型太赫兹辐射

IF 1.5 3区 物理与天体物理 Q3 PHYSICS, NUCLEAR Physical Review Accelerators and Beams Pub Date : 2024-08-01 DOI:10.1103/physrevaccelbeams.27.081301
J. Y. Hua, X. B. Zhang, M. Chen, S. M. Weng, Y. P. Chen, Z. M. Sheng
{"title":"强激光与双层薄固体靶相互作用产生的增强型太赫兹辐射","authors":"J. Y. Hua, X. B. Zhang, M. Chen, S. M. Weng, Y. P. Chen, Z. M. Sheng","doi":"10.1103/physrevaccelbeams.27.081301","DOIUrl":null,"url":null,"abstract":"A terahertz radiation enhancing scheme, in which a linearly polarized weakly relativistic laser pulse irradiates a target consisting of two parallel thin-solid layers with a certain gap, is proposed and studied by using two-dimensional particle-in-cell simulations. The radiation is known to be produced by laser-produced hot electrons via mechanisms such as coherent transition radiation at the target surfaces. Under optimized conditions, the energy conversion efficiency of terahertz radiation can be as high as 3.3%, which is nearly 1.5 times higher than that obtained with a single-layer target with the same drive laser. This is mainly due to the enhanced hot electron generation with moderate energy via multiple reflections of the laser pulse between the two target layers. The radiation has two peaks close to 30° from the target surface, which are more collimated than that with the single-layer target. The dependence of the terahertz radiation on a variety of target parameters is given, which can control the terahertz spectrum and radiation efficiency and thus provide guidance for experimental investigations. Moreover, both the coherent transition radiation and antenna radiation models are applied to explain the angular distributions of the terahertz emission found in the simulations.","PeriodicalId":54297,"journal":{"name":"Physical Review Accelerators and Beams","volume":"54 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhanced terahertz radiation generated by intense laser interaction with a two-layer thin solid target\",\"authors\":\"J. Y. Hua, X. B. Zhang, M. Chen, S. M. Weng, Y. P. Chen, Z. M. Sheng\",\"doi\":\"10.1103/physrevaccelbeams.27.081301\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A terahertz radiation enhancing scheme, in which a linearly polarized weakly relativistic laser pulse irradiates a target consisting of two parallel thin-solid layers with a certain gap, is proposed and studied by using two-dimensional particle-in-cell simulations. The radiation is known to be produced by laser-produced hot electrons via mechanisms such as coherent transition radiation at the target surfaces. Under optimized conditions, the energy conversion efficiency of terahertz radiation can be as high as 3.3%, which is nearly 1.5 times higher than that obtained with a single-layer target with the same drive laser. This is mainly due to the enhanced hot electron generation with moderate energy via multiple reflections of the laser pulse between the two target layers. The radiation has two peaks close to 30° from the target surface, which are more collimated than that with the single-layer target. The dependence of the terahertz radiation on a variety of target parameters is given, which can control the terahertz spectrum and radiation efficiency and thus provide guidance for experimental investigations. Moreover, both the coherent transition radiation and antenna radiation models are applied to explain the angular distributions of the terahertz emission found in the simulations.\",\"PeriodicalId\":54297,\"journal\":{\"name\":\"Physical Review Accelerators and Beams\",\"volume\":\"54 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review Accelerators and Beams\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevaccelbeams.27.081301\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review Accelerators and Beams","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevaccelbeams.27.081301","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, NUCLEAR","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种太赫兹辐射增强方案,即线性偏振弱相对论激光脉冲辐照由两个具有一定间隙的平行薄固体层组成的目标,并利用二维粒子入胞模拟对该方案进行了研究。已知辐射是由激光产生的热电子通过靶表面相干转变辐射等机制产生的。在优化条件下,太赫兹辐射的能量转换效率可高达 3.3%,比使用相同驱动激光的单层靶的能量转换效率高近 1.5 倍。这主要是由于激光脉冲在两个靶层之间的多次反射增强了能量适中的热电子生成。辐射在距离靶表面 30° 附近有两个峰值,比单层靶的辐射更加准直。研究给出了太赫兹辐射对各种靶参数的依赖关系,这些参数可以控制太赫兹频谱和辐射效率,从而为实验研究提供指导。此外,相干过渡辐射模型和天线辐射模型都被用来解释模拟中发现的太赫兹辐射的角度分布。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Enhanced terahertz radiation generated by intense laser interaction with a two-layer thin solid target
A terahertz radiation enhancing scheme, in which a linearly polarized weakly relativistic laser pulse irradiates a target consisting of two parallel thin-solid layers with a certain gap, is proposed and studied by using two-dimensional particle-in-cell simulations. The radiation is known to be produced by laser-produced hot electrons via mechanisms such as coherent transition radiation at the target surfaces. Under optimized conditions, the energy conversion efficiency of terahertz radiation can be as high as 3.3%, which is nearly 1.5 times higher than that obtained with a single-layer target with the same drive laser. This is mainly due to the enhanced hot electron generation with moderate energy via multiple reflections of the laser pulse between the two target layers. The radiation has two peaks close to 30° from the target surface, which are more collimated than that with the single-layer target. The dependence of the terahertz radiation on a variety of target parameters is given, which can control the terahertz spectrum and radiation efficiency and thus provide guidance for experimental investigations. Moreover, both the coherent transition radiation and antenna radiation models are applied to explain the angular distributions of the terahertz emission found in the simulations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physical Review Accelerators and Beams
Physical Review Accelerators and Beams Physics and Astronomy-Surfaces and Interfaces
CiteScore
3.90
自引率
23.50%
发文量
158
审稿时长
23 weeks
期刊介绍: Physical Review Special Topics - Accelerators and Beams (PRST-AB) is a peer-reviewed, purely electronic journal, distributed without charge to readers and funded by sponsors from national and international laboratories and other partners. The articles are published by the American Physical Society under the terms of the Creative Commons Attribution 3.0 License. It covers the full range of accelerator science and technology; subsystem and component technologies; beam dynamics; accelerator applications; and design, operation, and improvement of accelerators used in science and industry. This includes accelerators for high-energy and nuclear physics, synchrotron-radiation production, spallation neutron sources, medical therapy, and intense-beam applications.
期刊最新文献
Efficient algorithms for dynamic aperture and momentum acceptance calculation in synchrotron light sources Dual-energy electron storage ring Calculations of space-charge tune shifts in storage rings with extremely short bunches and small bunch spacing Harmonic analysis of nonstationary signals with application to LHC beam measurements Theory of particle beams transport over curved plasma-discharge capillaries
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1