硫化物固态电池硅阳极在高温下的界面和机械降解机制

IF 1.5 4区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY Chinese Physics B Pub Date : 2024-07-01 DOI:10.1088/1674-1056/ad5276
Qiuchen Wang, Yuli Huang, Jing Xu, Xiqian Yu, Hong Li, Liquan Chen
{"title":"硫化物固态电池硅阳极在高温下的界面和机械降解机制","authors":"Qiuchen Wang, Yuli Huang, Jing Xu, Xiqian Yu, Hong Li, Liquan Chen","doi":"10.1088/1674-1056/ad5276","DOIUrl":null,"url":null,"abstract":"Silicon (Si) is a competitive anode material owing to its high theoretical capacity and low electrochemical potential. Recently, the prospect of Si anodes in solid-state batteries (SSBs) has been proposed due to less solid electrolyte interphase (SEI) formation and particle pulverization. However, major challenges arise for Si anodes in SSBs at elevated temperatures. In this work, the failure mechanisms of Si-Li<sub>6</sub>PS<sub>5</sub>Cl (LPSC) composite anodes above 80 °C are thoroughly investigated from the perspectives of interface stability and (electro)chemo-mechanical effect. The chemistry and growth kinetics of Li<sub><italic toggle=\"yes\">x</italic></sub>Si|LPSC interphase are demonstrated by combining electrochemical, chemical and computational characterizations. Si and/or Si–P compound formed at Li<sub><italic toggle=\"yes\">x</italic></sub>Si|LPSC interface prove to be detrimental to interface stability at high temperatures. On the other hand, excessive volume expansion and local stress caused by Si lithiation at high temperatures damage the mechanical structure of Si-LPSC composite anodes. This work elucidates the behavior and failure mechanisms of Si-based anodes in SSBs at high temperatures and provides insights into upgrading Si-based anodes for application in SSBs.","PeriodicalId":10253,"journal":{"name":"Chinese Physics B","volume":"99 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Interface and mechanical degradation mechanisms of the silicon anode in sulfide-based solid-state batteries at high temperatures\",\"authors\":\"Qiuchen Wang, Yuli Huang, Jing Xu, Xiqian Yu, Hong Li, Liquan Chen\",\"doi\":\"10.1088/1674-1056/ad5276\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Silicon (Si) is a competitive anode material owing to its high theoretical capacity and low electrochemical potential. Recently, the prospect of Si anodes in solid-state batteries (SSBs) has been proposed due to less solid electrolyte interphase (SEI) formation and particle pulverization. However, major challenges arise for Si anodes in SSBs at elevated temperatures. In this work, the failure mechanisms of Si-Li<sub>6</sub>PS<sub>5</sub>Cl (LPSC) composite anodes above 80 °C are thoroughly investigated from the perspectives of interface stability and (electro)chemo-mechanical effect. The chemistry and growth kinetics of Li<sub><italic toggle=\\\"yes\\\">x</italic></sub>Si|LPSC interphase are demonstrated by combining electrochemical, chemical and computational characterizations. Si and/or Si–P compound formed at Li<sub><italic toggle=\\\"yes\\\">x</italic></sub>Si|LPSC interface prove to be detrimental to interface stability at high temperatures. On the other hand, excessive volume expansion and local stress caused by Si lithiation at high temperatures damage the mechanical structure of Si-LPSC composite anodes. This work elucidates the behavior and failure mechanisms of Si-based anodes in SSBs at high temperatures and provides insights into upgrading Si-based anodes for application in SSBs.\",\"PeriodicalId\":10253,\"journal\":{\"name\":\"Chinese Physics B\",\"volume\":\"99 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chinese Physics B\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1674-1056/ad5276\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Physics B","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1674-1056/ad5276","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

硅(Si)具有理论容量高、电化学势低的特点,是一种极具竞争力的阳极材料。最近,人们提出了在固态电池(SSB)中使用硅阳极的前景,因为硅阳极的固态电解质相间(SEI)形成和颗粒粉化较少。然而,在高温条件下,固态电池中的硅阳极面临着重大挑战。在这项研究中,我们从界面稳定性和(电)化学机械效应的角度深入研究了硅-Li6PS5Cl(LPSC)复合阳极在 80 ℃ 以上的失效机理。通过结合电化学、化学和计算特性,证明了 LixSi|LPSC 相间的化学性质和生长动力学。事实证明,在 LixSi|LPSC 界面形成的 Si 和/或 Si-P 化合物不利于高温下界面的稳定性。另一方面,高温下 Si 锂化引起的过度体积膨胀和局部应力破坏了 Si-LPSC 复合阳极的机械结构。这项研究阐明了硅基阳极在 SSB 中的高温行为和失效机理,并为升级硅基阳极在 SSB 中的应用提供了启示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Interface and mechanical degradation mechanisms of the silicon anode in sulfide-based solid-state batteries at high temperatures
Silicon (Si) is a competitive anode material owing to its high theoretical capacity and low electrochemical potential. Recently, the prospect of Si anodes in solid-state batteries (SSBs) has been proposed due to less solid electrolyte interphase (SEI) formation and particle pulverization. However, major challenges arise for Si anodes in SSBs at elevated temperatures. In this work, the failure mechanisms of Si-Li6PS5Cl (LPSC) composite anodes above 80 °C are thoroughly investigated from the perspectives of interface stability and (electro)chemo-mechanical effect. The chemistry and growth kinetics of LixSi|LPSC interphase are demonstrated by combining electrochemical, chemical and computational characterizations. Si and/or Si–P compound formed at LixSi|LPSC interface prove to be detrimental to interface stability at high temperatures. On the other hand, excessive volume expansion and local stress caused by Si lithiation at high temperatures damage the mechanical structure of Si-LPSC composite anodes. This work elucidates the behavior and failure mechanisms of Si-based anodes in SSBs at high temperatures and provides insights into upgrading Si-based anodes for application in SSBs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chinese Physics B
Chinese Physics B 物理-物理:综合
CiteScore
2.80
自引率
23.50%
发文量
15667
审稿时长
2.4 months
期刊介绍: Chinese Physics B is an international journal covering the latest developments and achievements in all branches of physics worldwide (with the exception of nuclear physics and physics of elementary particles and fields, which is covered by Chinese Physics C). It publishes original research papers and rapid communications reflecting creative and innovative achievements across the field of physics, as well as review articles covering important accomplishments in the frontiers of physics. Subject coverage includes: Condensed matter physics and the physics of materials Atomic, molecular and optical physics Statistical, nonlinear and soft matter physics Plasma physics Interdisciplinary physics.
期刊最新文献
Coupling and characterization of a Si/SiGe triple quantum dot array with a microwave resonator Probing nickelate superconductors at atomic scale: A STEM review In-situ deposited anti-aging TiN capping layer for Nb superconducting quantum circuits Quantum confinement of carriers in the type-I quantum wells structure Preparation and magnetic hardening of low Ti content (Sm,Zr)(Fe,Co,Ti)12 magnets by rapid solidification non-equilibrium method
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1