{"title":"通过同核双原子催化剂的异源化了解高性能电催化固氮的内在机制","authors":"Yuefei Zhang, Yu Yang, Yu Zhang, Xuefei Liu, Wenjun Xiao, Degui Wang, Gang Wang, Zhen Wang, Jinshun Bi, Jincheng Liu, Xun Zhou, Wentao Wang","doi":"10.1002/eem2.12803","DOIUrl":null,"url":null,"abstract":"A heteronuclear dual transition metal atom catalyst is a promising strategy to solve and relieve the increasing energy and environment crisis. However, the role of each atom still does not efficiently differentiate due to the high activity but low detectability of each transition metal in the synergistic catalytic process when considering the influence of heteronuclear induced atomic difference for each transition metal atom, thus seriously hindering intrinsic mechanism finding. Herein, we proposed coordinate environment vary induced heterogenization of homonuclear dual-transition metal, which inherits the advantage of heteronuclear transition metal atom catalyst but also controls the variable of the two atoms to explore the underlying mechanism. Based on this proposal, employing density functional theory study and machine learning, 23 kinds of homonuclear transition metals are doping in four asymmetric C<sub>3</sub>N for heterogenization to evaluate the underlying catalytic mechanism. Our results demonstrate that five catalysts exhibit excellent catalytic performance with a low limiting potential of −0.28 to −0.48 V. In the meantime, a new mechanism, “capture–charge distribution–recapture–charge redistribution”, is developed for both side-on and end-on configuration. More importantly, the pronate site of the first hydrogenation is identified based on this mechanism. Our work not only initially makes a deep understanding of the transition dual metal-based heteronuclear catalyst indirectly but also broadens the development of complicated homonuclear dual-atom catalysts in the future.","PeriodicalId":11554,"journal":{"name":"Energy & Environmental Materials","volume":"54 1","pages":""},"PeriodicalIF":13.0000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Understanding the Intrinsic Mechanism of High-Performance Electrocatalytic Nitrogen Fixation by Heterogenization of Homonuclear Dual-Atom Catalysts\",\"authors\":\"Yuefei Zhang, Yu Yang, Yu Zhang, Xuefei Liu, Wenjun Xiao, Degui Wang, Gang Wang, Zhen Wang, Jinshun Bi, Jincheng Liu, Xun Zhou, Wentao Wang\",\"doi\":\"10.1002/eem2.12803\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A heteronuclear dual transition metal atom catalyst is a promising strategy to solve and relieve the increasing energy and environment crisis. However, the role of each atom still does not efficiently differentiate due to the high activity but low detectability of each transition metal in the synergistic catalytic process when considering the influence of heteronuclear induced atomic difference for each transition metal atom, thus seriously hindering intrinsic mechanism finding. Herein, we proposed coordinate environment vary induced heterogenization of homonuclear dual-transition metal, which inherits the advantage of heteronuclear transition metal atom catalyst but also controls the variable of the two atoms to explore the underlying mechanism. Based on this proposal, employing density functional theory study and machine learning, 23 kinds of homonuclear transition metals are doping in four asymmetric C<sub>3</sub>N for heterogenization to evaluate the underlying catalytic mechanism. Our results demonstrate that five catalysts exhibit excellent catalytic performance with a low limiting potential of −0.28 to −0.48 V. In the meantime, a new mechanism, “capture–charge distribution–recapture–charge redistribution”, is developed for both side-on and end-on configuration. More importantly, the pronate site of the first hydrogenation is identified based on this mechanism. Our work not only initially makes a deep understanding of the transition dual metal-based heteronuclear catalyst indirectly but also broadens the development of complicated homonuclear dual-atom catalysts in the future.\",\"PeriodicalId\":11554,\"journal\":{\"name\":\"Energy & Environmental Materials\",\"volume\":\"54 1\",\"pages\":\"\"},\"PeriodicalIF\":13.0000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy & Environmental Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/eem2.12803\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy & Environmental Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/eem2.12803","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Understanding the Intrinsic Mechanism of High-Performance Electrocatalytic Nitrogen Fixation by Heterogenization of Homonuclear Dual-Atom Catalysts
A heteronuclear dual transition metal atom catalyst is a promising strategy to solve and relieve the increasing energy and environment crisis. However, the role of each atom still does not efficiently differentiate due to the high activity but low detectability of each transition metal in the synergistic catalytic process when considering the influence of heteronuclear induced atomic difference for each transition metal atom, thus seriously hindering intrinsic mechanism finding. Herein, we proposed coordinate environment vary induced heterogenization of homonuclear dual-transition metal, which inherits the advantage of heteronuclear transition metal atom catalyst but also controls the variable of the two atoms to explore the underlying mechanism. Based on this proposal, employing density functional theory study and machine learning, 23 kinds of homonuclear transition metals are doping in four asymmetric C3N for heterogenization to evaluate the underlying catalytic mechanism. Our results demonstrate that five catalysts exhibit excellent catalytic performance with a low limiting potential of −0.28 to −0.48 V. In the meantime, a new mechanism, “capture–charge distribution–recapture–charge redistribution”, is developed for both side-on and end-on configuration. More importantly, the pronate site of the first hydrogenation is identified based on this mechanism. Our work not only initially makes a deep understanding of the transition dual metal-based heteronuclear catalyst indirectly but also broadens the development of complicated homonuclear dual-atom catalysts in the future.
期刊介绍:
Energy & Environmental Materials (EEM) is an international journal published by Zhengzhou University in collaboration with John Wiley & Sons, Inc. The journal aims to publish high quality research related to materials for energy harvesting, conversion, storage, and transport, as well as for creating a cleaner environment. EEM welcomes research work of significant general interest that has a high impact on society-relevant technological advances. The scope of the journal is intentionally broad, recognizing the complexity of issues and challenges related to energy and environmental materials. Therefore, interdisciplinary work across basic science and engineering disciplines is particularly encouraged. The areas covered by the journal include, but are not limited to, materials and composites for photovoltaics and photoelectrochemistry, bioprocessing, batteries, fuel cells, supercapacitors, clean air, and devices with multifunctionality. The readership of the journal includes chemical, physical, biological, materials, and environmental scientists and engineers from academia, industry, and policy-making.