{"title":"一种基于时间电压转换器的 MPPT,在线跟踪时间为 440 美元,跟踪效率为 99.7%,适用于具有冷启动和过压保护功能的无电池集电前端","authors":"Aditi Chakraborty;Ashis Maity","doi":"10.1109/TCSI.2024.3435533","DOIUrl":null,"url":null,"abstract":"This paper introduces a time-to-voltage converter-based maximum power point tracking (TVCB-MPPT) for harvesting photovoltaic energy into a super-capacitor using a single solar cell. In the proposed design, a time-to-voltage converter is used to achieve a fast and accurate tracking of the maximum power point (MPP) without using a time-averaging/time-integrating function as used in the conventional time-based MPPT design. Moreover, with the continuous monitoring of the MPP, the proposed converter responds immediately and maximizes the extracted energy under varying irradiance conditions as compared to the conventional intermittent MPPT topologies. The addition of the cold-start operation and the over-voltage protection increase the robustness and energy-autonomy of the overall system. The proposed TVCB-MPPT converter is fabricated in a 180 nm CMOS process. In the measured result, a fast online MPP tracking time of \n<inline-formula> <tex-math>$440~\\mu $ </tex-math></inline-formula>\ns is observed with an initial tracking time of 4.8 ms. It also shows a peak tracking efficiency of 99.7% with a power conversion efficiency >87% in the entire input power range.","PeriodicalId":13039,"journal":{"name":"IEEE Transactions on Circuits and Systems I: Regular Papers","volume":"71 10","pages":"4499-4511"},"PeriodicalIF":5.2000,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Time-to-Voltage Converter-Based MPPT With 440 μs Online Tracking Time, 99.7% Tracking Efficiency for a Battery-Less Harvesting Front-End With Cold-Startup and Over-Voltage Protection\",\"authors\":\"Aditi Chakraborty;Ashis Maity\",\"doi\":\"10.1109/TCSI.2024.3435533\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper introduces a time-to-voltage converter-based maximum power point tracking (TVCB-MPPT) for harvesting photovoltaic energy into a super-capacitor using a single solar cell. In the proposed design, a time-to-voltage converter is used to achieve a fast and accurate tracking of the maximum power point (MPP) without using a time-averaging/time-integrating function as used in the conventional time-based MPPT design. Moreover, with the continuous monitoring of the MPP, the proposed converter responds immediately and maximizes the extracted energy under varying irradiance conditions as compared to the conventional intermittent MPPT topologies. The addition of the cold-start operation and the over-voltage protection increase the robustness and energy-autonomy of the overall system. The proposed TVCB-MPPT converter is fabricated in a 180 nm CMOS process. In the measured result, a fast online MPP tracking time of \\n<inline-formula> <tex-math>$440~\\\\mu $ </tex-math></inline-formula>\\ns is observed with an initial tracking time of 4.8 ms. It also shows a peak tracking efficiency of 99.7% with a power conversion efficiency >87% in the entire input power range.\",\"PeriodicalId\":13039,\"journal\":{\"name\":\"IEEE Transactions on Circuits and Systems I: Regular Papers\",\"volume\":\"71 10\",\"pages\":\"4499-4511\"},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2024-08-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Circuits and Systems I: Regular Papers\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10621014/\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Circuits and Systems I: Regular Papers","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10621014/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
A Time-to-Voltage Converter-Based MPPT With 440 μs Online Tracking Time, 99.7% Tracking Efficiency for a Battery-Less Harvesting Front-End With Cold-Startup and Over-Voltage Protection
This paper introduces a time-to-voltage converter-based maximum power point tracking (TVCB-MPPT) for harvesting photovoltaic energy into a super-capacitor using a single solar cell. In the proposed design, a time-to-voltage converter is used to achieve a fast and accurate tracking of the maximum power point (MPP) without using a time-averaging/time-integrating function as used in the conventional time-based MPPT design. Moreover, with the continuous monitoring of the MPP, the proposed converter responds immediately and maximizes the extracted energy under varying irradiance conditions as compared to the conventional intermittent MPPT topologies. The addition of the cold-start operation and the over-voltage protection increase the robustness and energy-autonomy of the overall system. The proposed TVCB-MPPT converter is fabricated in a 180 nm CMOS process. In the measured result, a fast online MPP tracking time of
$440~\mu $
s is observed with an initial tracking time of 4.8 ms. It also shows a peak tracking efficiency of 99.7% with a power conversion efficiency >87% in the entire input power range.
期刊介绍:
TCAS I publishes regular papers in the field specified by the theory, analysis, design, and practical implementations of circuits, and the application of circuit techniques to systems and to signal processing. Included is the whole spectrum from basic scientific theory to industrial applications. The field of interest covered includes: - Circuits: Analog, Digital and Mixed Signal Circuits and Systems - Nonlinear Circuits and Systems, Integrated Sensors, MEMS and Systems on Chip, Nanoscale Circuits and Systems, Optoelectronic - Circuits and Systems, Power Electronics and Systems - Software for Analog-and-Logic Circuits and Systems - Control aspects of Circuits and Systems.