Zahra Rezaei, Prof. Elisabeth Prince, Prof. Milad Kamkar
{"title":"用于电磁屏蔽的丝状气凝胶","authors":"Zahra Rezaei, Prof. Elisabeth Prince, Prof. Milad Kamkar","doi":"10.1002/cnma.202400113","DOIUrl":null,"url":null,"abstract":"<p>The unrelenting expansion of electronics and wireless communications has brought an onslaught of electromagnetic interference and environmental radiation as a new form of pollution. Filamentous aerogels offer a viable solution to this growing challenge: with their hierarchical inter- and intra-filament porosities, they have recently shown great promise as EMI shielding materials. The multidirectional EM wave scattering within their hierarchical porous structure enhances attenuation much higher than conventional monolithic aerogels. This concept paper summarizes recent groundbreaking efforts in filamentous aerogel fabrication, with a focus on liquid streaming and 3D printing approaches. Further research and development could see filamentous aerogels emerge as next-generation materials to combat the intensification of electromagnetic environmental impacts.</p>","PeriodicalId":54339,"journal":{"name":"ChemNanoMat","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cnma.202400113","citationCount":"0","resultStr":"{\"title\":\"Filamentous Aerogels for Electromagnetic Shielding\",\"authors\":\"Zahra Rezaei, Prof. Elisabeth Prince, Prof. Milad Kamkar\",\"doi\":\"10.1002/cnma.202400113\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The unrelenting expansion of electronics and wireless communications has brought an onslaught of electromagnetic interference and environmental radiation as a new form of pollution. Filamentous aerogels offer a viable solution to this growing challenge: with their hierarchical inter- and intra-filament porosities, they have recently shown great promise as EMI shielding materials. The multidirectional EM wave scattering within their hierarchical porous structure enhances attenuation much higher than conventional monolithic aerogels. This concept paper summarizes recent groundbreaking efforts in filamentous aerogel fabrication, with a focus on liquid streaming and 3D printing approaches. Further research and development could see filamentous aerogels emerge as next-generation materials to combat the intensification of electromagnetic environmental impacts.</p>\",\"PeriodicalId\":54339,\"journal\":{\"name\":\"ChemNanoMat\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-08-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cnma.202400113\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ChemNanoMat\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cnma.202400113\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemNanoMat","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cnma.202400113","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Filamentous Aerogels for Electromagnetic Shielding
The unrelenting expansion of electronics and wireless communications has brought an onslaught of electromagnetic interference and environmental radiation as a new form of pollution. Filamentous aerogels offer a viable solution to this growing challenge: with their hierarchical inter- and intra-filament porosities, they have recently shown great promise as EMI shielding materials. The multidirectional EM wave scattering within their hierarchical porous structure enhances attenuation much higher than conventional monolithic aerogels. This concept paper summarizes recent groundbreaking efforts in filamentous aerogel fabrication, with a focus on liquid streaming and 3D printing approaches. Further research and development could see filamentous aerogels emerge as next-generation materials to combat the intensification of electromagnetic environmental impacts.
ChemNanoMatEnergy-Energy Engineering and Power Technology
CiteScore
6.10
自引率
2.60%
发文量
236
期刊介绍:
ChemNanoMat is a new journal published in close cooperation with the teams of Angewandte Chemie and Advanced Materials, and is the new sister journal to Chemistry—An Asian Journal.