Kevin R. Talley;Benjamen N. Taber;Rick Morton;Steve K. Brainerd;Austin J. Fox
{"title":"块状声波滤波器边环的单晶片组合优化","authors":"Kevin R. Talley;Benjamen N. Taber;Rick Morton;Steve K. Brainerd;Austin J. Fox","doi":"10.1109/JMEMS.2024.3409155","DOIUrl":null,"url":null,"abstract":"Optimization of bulk acoustic wave (BAW) resonator border ring (BR) thicknesses and widths has traditionally been done using multi-wafer splits, often in combination with modeling techniques. Here we describe a single-wafer, two-factor experimental design with 21 distinct experimental regions where we employed custom ion trim and photoresist exposure procedures to optimize BR thickness and width. This resulted in a methodology for optimizing device performance in a manner that reduces the time and cost compared to traditional methods. Though we applied this experimental design to investigating the impact of BR thickness and width on radio frequency BAW filter passband performance, it is generalizable, thereby enabling single-wafer multi-factor experimental designs across an array of device components. [2024-0039]","PeriodicalId":16621,"journal":{"name":"Journal of Microelectromechanical Systems","volume":"33 4","pages":"468-472"},"PeriodicalIF":2.5000,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Single-Wafer Combinatorial Optimization of Border Rings for Bulk Acoustic Wave Filters\",\"authors\":\"Kevin R. Talley;Benjamen N. Taber;Rick Morton;Steve K. Brainerd;Austin J. Fox\",\"doi\":\"10.1109/JMEMS.2024.3409155\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Optimization of bulk acoustic wave (BAW) resonator border ring (BR) thicknesses and widths has traditionally been done using multi-wafer splits, often in combination with modeling techniques. Here we describe a single-wafer, two-factor experimental design with 21 distinct experimental regions where we employed custom ion trim and photoresist exposure procedures to optimize BR thickness and width. This resulted in a methodology for optimizing device performance in a manner that reduces the time and cost compared to traditional methods. Though we applied this experimental design to investigating the impact of BR thickness and width on radio frequency BAW filter passband performance, it is generalizable, thereby enabling single-wafer multi-factor experimental designs across an array of device components. [2024-0039]\",\"PeriodicalId\":16621,\"journal\":{\"name\":\"Journal of Microelectromechanical Systems\",\"volume\":\"33 4\",\"pages\":\"468-472\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Microelectromechanical Systems\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10554637/\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Microelectromechanical Systems","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10554637/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Single-Wafer Combinatorial Optimization of Border Rings for Bulk Acoustic Wave Filters
Optimization of bulk acoustic wave (BAW) resonator border ring (BR) thicknesses and widths has traditionally been done using multi-wafer splits, often in combination with modeling techniques. Here we describe a single-wafer, two-factor experimental design with 21 distinct experimental regions where we employed custom ion trim and photoresist exposure procedures to optimize BR thickness and width. This resulted in a methodology for optimizing device performance in a manner that reduces the time and cost compared to traditional methods. Though we applied this experimental design to investigating the impact of BR thickness and width on radio frequency BAW filter passband performance, it is generalizable, thereby enabling single-wafer multi-factor experimental designs across an array of device components. [2024-0039]
期刊介绍:
The topics of interest include, but are not limited to: devices ranging in size from microns to millimeters, IC-compatible fabrication techniques, other fabrication techniques, measurement of micro phenomena, theoretical results, new materials and designs, micro actuators, micro robots, micro batteries, bearings, wear, reliability, electrical interconnections, micro telemanipulation, and standards appropriate to MEMS. Application examples and application oriented devices in fluidics, optics, bio-medical engineering, etc., are also of central interest.