用于生物启发微型空气飞行器低速高湍流强度飞行实验的开放式喷气设施

IF 2.9 3区 工程技术 Q2 ENGINEERING, MECHANICAL Advances in Aerodynamics Pub Date : 2024-08-02 DOI:10.1186/s42774-024-00180-6
Zhifeng Liu, Yue Yang
{"title":"用于生物启发微型空气飞行器低速高湍流强度飞行实验的开放式喷气设施","authors":"Zhifeng Liu, Yue Yang","doi":"10.1186/s42774-024-00180-6","DOIUrl":null,"url":null,"abstract":"Bio-inspired micro-air-vehicles (MAVs) usually operate in the atmospheric boundary layer at a low Reynolds number and complex wind conditions including large-scale turbulence, strong shear, and gusts. We develop an open jet facility (OJF) to meet the requirements of MAV flight experiments at very low speed and high turbulence intensity. Powered by a stage-driven fan, the OJF is capable of generating wind speeds covering 0.1 – 16.8 m/s, with a velocity ratio of 100:1. The contraction section of the OJF is designed using an adjoint-driven optimization method, resulting in a contraction ratio of 3:1 and a length-to-diameter ratio of 0.75. A modularized design of the jet nozzle can produce laminar or high-turbulence wind conditions. Flow field calibration results demonstrate that the OJF is capable of producing a high-quality baseline flow with steady airspeed as low as 0.1 m/s, uniform region around 80% of the cross-sectional test area, and turbulence intensity around 0.5%. Equipped with an optimized active grid (AG), the OJF can reproduce controllable, fully-developed turbulent wind conditions with the turbulence intensity up to 24%, energy spectrum satisfying the five-thirds power law, and the uniform region close to 70% of the cross-sectional area of the test section. The turbulence intensity, integral length scale, Kolmogorov length scale, and mean energy dissipation rate of the generated flow can be adjusted by varying the area of the triangular through-hole in the wings of the AG.","PeriodicalId":33737,"journal":{"name":"Advances in Aerodynamics","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Open-jet facility for bio-inspired micro-air-vehicle flight experiment at low speed and high turbulence intensity\",\"authors\":\"Zhifeng Liu, Yue Yang\",\"doi\":\"10.1186/s42774-024-00180-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Bio-inspired micro-air-vehicles (MAVs) usually operate in the atmospheric boundary layer at a low Reynolds number and complex wind conditions including large-scale turbulence, strong shear, and gusts. We develop an open jet facility (OJF) to meet the requirements of MAV flight experiments at very low speed and high turbulence intensity. Powered by a stage-driven fan, the OJF is capable of generating wind speeds covering 0.1 – 16.8 m/s, with a velocity ratio of 100:1. The contraction section of the OJF is designed using an adjoint-driven optimization method, resulting in a contraction ratio of 3:1 and a length-to-diameter ratio of 0.75. A modularized design of the jet nozzle can produce laminar or high-turbulence wind conditions. Flow field calibration results demonstrate that the OJF is capable of producing a high-quality baseline flow with steady airspeed as low as 0.1 m/s, uniform region around 80% of the cross-sectional test area, and turbulence intensity around 0.5%. Equipped with an optimized active grid (AG), the OJF can reproduce controllable, fully-developed turbulent wind conditions with the turbulence intensity up to 24%, energy spectrum satisfying the five-thirds power law, and the uniform region close to 70% of the cross-sectional area of the test section. The turbulence intensity, integral length scale, Kolmogorov length scale, and mean energy dissipation rate of the generated flow can be adjusted by varying the area of the triangular through-hole in the wings of the AG.\",\"PeriodicalId\":33737,\"journal\":{\"name\":\"Advances in Aerodynamics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-08-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Aerodynamics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1186/s42774-024-00180-6\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Aerodynamics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s42774-024-00180-6","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

受生物启发的微型空气飞行器(MAV)通常在低雷诺数和复杂风况(包括大尺度湍流、强切变和阵风)的大气边界层中运行。我们开发了一种开放式喷气设施(OJF),以满足微型飞行器在极低速度和高湍流强度下进行飞行实验的要求。开放式喷气设施由台风机驱动,能够产生 0.1 - 16.8 米/秒的风速,风速比为 100:1。OJF 的收缩部分采用了邻接驱动优化法设计,收缩比为 3:1,长径比为 0.75。模块化设计的射流喷嘴可产生层流或高湍流风况。流场校准结果表明,OJF 能够产生高质量的基线流,稳定空速低至 0.1 米/秒,均匀区域约为横截面测试区域的 80%,湍流强度约为 0.5%。OJF 配备了优化的有源网格(AG),可以再现可控的、充分发展的湍流风条件,湍流强度可达 24%,能谱满足三分之二幂律,均匀区域接近测试截面面积的 70%。通过改变 AG 机翼上三角形通孔的面积,可以调节所产生气流的湍流强度、积分长度尺度、科尔莫哥洛夫长度尺度和平均能量耗散率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Open-jet facility for bio-inspired micro-air-vehicle flight experiment at low speed and high turbulence intensity
Bio-inspired micro-air-vehicles (MAVs) usually operate in the atmospheric boundary layer at a low Reynolds number and complex wind conditions including large-scale turbulence, strong shear, and gusts. We develop an open jet facility (OJF) to meet the requirements of MAV flight experiments at very low speed and high turbulence intensity. Powered by a stage-driven fan, the OJF is capable of generating wind speeds covering 0.1 – 16.8 m/s, with a velocity ratio of 100:1. The contraction section of the OJF is designed using an adjoint-driven optimization method, resulting in a contraction ratio of 3:1 and a length-to-diameter ratio of 0.75. A modularized design of the jet nozzle can produce laminar or high-turbulence wind conditions. Flow field calibration results demonstrate that the OJF is capable of producing a high-quality baseline flow with steady airspeed as low as 0.1 m/s, uniform region around 80% of the cross-sectional test area, and turbulence intensity around 0.5%. Equipped with an optimized active grid (AG), the OJF can reproduce controllable, fully-developed turbulent wind conditions with the turbulence intensity up to 24%, energy spectrum satisfying the five-thirds power law, and the uniform region close to 70% of the cross-sectional area of the test section. The turbulence intensity, integral length scale, Kolmogorov length scale, and mean energy dissipation rate of the generated flow can be adjusted by varying the area of the triangular through-hole in the wings of the AG.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.50
自引率
4.30%
发文量
35
审稿时长
11 weeks
期刊最新文献
Multiscale simulation of rarefied gas dynamics via direct intermittent GSIS-DSMC coupling On the effects of non-zero yaw on leading-edge tubercled wings Wind-resistant design theory and safety guarantee for large oil and gas storage tanks in coastal areas Open-jet facility for bio-inspired micro-air-vehicle flight experiment at low speed and high turbulence intensity Numerical simulation and analysis of a ducted-fan drone hovering in confined environments
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1