Sven Eckart, Krishna P. Shrestha, Binod R. Giri, Qilong Fang, Chen Chen, Wei Li, Hartmut Krause, Fabian Mauss, Dong Liu, Yuyang Li
{"title":"通过实验和动力学建模深入了解醋酸乙酯火焰的化学性质:层流燃烧的速度、种类和氮氧化物排放","authors":"Sven Eckart, Krishna P. Shrestha, Binod R. Giri, Qilong Fang, Chen Chen, Wei Li, Hartmut Krause, Fabian Mauss, Dong Liu, Yuyang Li","doi":"10.1016/j.proci.2024.105487","DOIUrl":null,"url":null,"abstract":"Oxygenated fuels, such as alcohols, ethers, and esters, are promising alternatives to conventional fuels. These fuels can help reduce detrimental emissions like carbon monoxide and unburned hydrocarbons and enhance octane ratings. Among these oxygenates, ethyl acetate (EA), a small alkyl ester sourced from biomass, emerges as a clean, promising energy carrier. It serves as a surrogate fuel to facilitate investigations into the combustion behaviours of biodiesel. Despite its importance, the literature knowledge of EA combustion characteristics is limited. Therefore, this study aims to broaden the knowledge of the combustion behaviour of this type of oxygenated fuel compound. In this study, we measured the laminar burning velocities of EA by employing a heat flux burner and a closed combustion vessel over the equivalence ratios of 0.7 – 1.7, pressures of 1 – 10 bar and temperatures ranging from 353 – 423 K. Further, we also measured the NO emissions in exhaust gas of the premixed flames fueled by EA/air for the first time over the equivalence ratio of 0.8 – 1.2. Additionally, we employed a non-premixed counterflow flame setup for extensive characterisation of species and their concentration under diverse conditions encompassing various strain rates and oxygen concentrations. Finally, we utilized these newly measured data to construct and validate a detailed kinetic model developed as part of this work. The newly developed model will help characterize the combustion properties of EA.","PeriodicalId":408,"journal":{"name":"Proceedings of the Combustion Institute","volume":"34 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Chemical insights into ethyl acetate flames from experiment and kinetic modeling: Laminar burning velocity, speciation and NOx emission\",\"authors\":\"Sven Eckart, Krishna P. Shrestha, Binod R. Giri, Qilong Fang, Chen Chen, Wei Li, Hartmut Krause, Fabian Mauss, Dong Liu, Yuyang Li\",\"doi\":\"10.1016/j.proci.2024.105487\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Oxygenated fuels, such as alcohols, ethers, and esters, are promising alternatives to conventional fuels. These fuels can help reduce detrimental emissions like carbon monoxide and unburned hydrocarbons and enhance octane ratings. Among these oxygenates, ethyl acetate (EA), a small alkyl ester sourced from biomass, emerges as a clean, promising energy carrier. It serves as a surrogate fuel to facilitate investigations into the combustion behaviours of biodiesel. Despite its importance, the literature knowledge of EA combustion characteristics is limited. Therefore, this study aims to broaden the knowledge of the combustion behaviour of this type of oxygenated fuel compound. In this study, we measured the laminar burning velocities of EA by employing a heat flux burner and a closed combustion vessel over the equivalence ratios of 0.7 – 1.7, pressures of 1 – 10 bar and temperatures ranging from 353 – 423 K. Further, we also measured the NO emissions in exhaust gas of the premixed flames fueled by EA/air for the first time over the equivalence ratio of 0.8 – 1.2. Additionally, we employed a non-premixed counterflow flame setup for extensive characterisation of species and their concentration under diverse conditions encompassing various strain rates and oxygen concentrations. Finally, we utilized these newly measured data to construct and validate a detailed kinetic model developed as part of this work. The newly developed model will help characterize the combustion properties of EA.\",\"PeriodicalId\":408,\"journal\":{\"name\":\"Proceedings of the Combustion Institute\",\"volume\":\"34 1\",\"pages\":\"\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Combustion Institute\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1016/j.proci.2024.105487\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Combustion Institute","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.proci.2024.105487","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
摘要
醇类、醚类和酯类等含氧燃料是很有前途的传统燃料替代品。这些燃料有助于减少一氧化碳和未燃烧碳氢化合物等有害气体的排放,并提高辛烷值。在这些含氧化合物中,醋酸乙酯(EA)是一种来自生物质的小烷基酯,是一种清洁、有前途的能源载体。乙酸乙酯是一种替代燃料,有助于研究生物柴油的燃烧行为。尽管它很重要,但有关 EA 燃烧特性的文献知识却很有限。因此,本研究旨在拓宽对这类含氧燃料化合物燃烧特性的认识。在这项研究中,我们采用热通量燃烧器和封闭式燃烧容器,在当量比为 0.7 - 1.7、压力为 1 - 10 巴、温度为 353 - 423 K 的条件下测量了 EA 的层燃速度。此外,我们还首次在当量比为 0.8 - 1.2 的条件下测量了以 EA/空气为燃料的预混合火焰废气中的氮氧化物排放量。此外,我们还采用了非预混合逆流火焰装置,在包括各种应变率和氧气浓度在内的不同条件下,对物种及其浓度进行了广泛表征。最后,我们利用这些新测量的数据,构建并验证了在这项工作中开发的详细动力学模型。新开发的模型将有助于描述 EA 的燃烧特性。
Chemical insights into ethyl acetate flames from experiment and kinetic modeling: Laminar burning velocity, speciation and NOx emission
Oxygenated fuels, such as alcohols, ethers, and esters, are promising alternatives to conventional fuels. These fuels can help reduce detrimental emissions like carbon monoxide and unburned hydrocarbons and enhance octane ratings. Among these oxygenates, ethyl acetate (EA), a small alkyl ester sourced from biomass, emerges as a clean, promising energy carrier. It serves as a surrogate fuel to facilitate investigations into the combustion behaviours of biodiesel. Despite its importance, the literature knowledge of EA combustion characteristics is limited. Therefore, this study aims to broaden the knowledge of the combustion behaviour of this type of oxygenated fuel compound. In this study, we measured the laminar burning velocities of EA by employing a heat flux burner and a closed combustion vessel over the equivalence ratios of 0.7 – 1.7, pressures of 1 – 10 bar and temperatures ranging from 353 – 423 K. Further, we also measured the NO emissions in exhaust gas of the premixed flames fueled by EA/air for the first time over the equivalence ratio of 0.8 – 1.2. Additionally, we employed a non-premixed counterflow flame setup for extensive characterisation of species and their concentration under diverse conditions encompassing various strain rates and oxygen concentrations. Finally, we utilized these newly measured data to construct and validate a detailed kinetic model developed as part of this work. The newly developed model will help characterize the combustion properties of EA.
期刊介绍:
The Proceedings of the Combustion Institute contains forefront contributions in fundamentals and applications of combustion science. For more than 50 years, the Combustion Institute has served as the peak international society for dissemination of scientific and technical research in the combustion field. In addition to author submissions, the Proceedings of the Combustion Institute includes the Institute''s prestigious invited strategic and topical reviews that represent indispensable resources for emergent research in the field. All papers are subjected to rigorous peer review.
Research papers and invited topical reviews; Reaction Kinetics; Soot, PAH, and other large molecules; Diagnostics; Laminar Flames; Turbulent Flames; Heterogeneous Combustion; Spray and Droplet Combustion; Detonations, Explosions & Supersonic Combustion; Fire Research; Stationary Combustion Systems; IC Engine and Gas Turbine Combustion; New Technology Concepts
The electronic version of Proceedings of the Combustion Institute contains supplemental material such as reaction mechanisms, illustrating movies, and other data.