{"title":"李信道上常规环线性 LDPC 编码的纠错性能","authors":"Jessica Bariffi;Hannes Bartz;Gianluigi Liva;Joachim Rosenthal","doi":"10.1109/TIT.2024.3436938","DOIUrl":null,"url":null,"abstract":"Most low-density parity-check (LDPC) code constructions are considered over finite fields. In this work, we focus on regular LDPC codes over integer residue rings and analyze their performance with respect to the Lee metric. Their error-correction performance is studied over two channel models, in the Lee metric. The first channel model is a discrete memoryless channel, whereas in the second channel model an error vector is drawn uniformly at random from all vectors of a fixed Lee weight. It is known that the two channel laws coincide in the asymptotic regime, meaning that their marginal distributions match. For both channel models, we derive upper bounds on the block error probability in terms of a random coding union bound as well as sphere packing bounds that make use of the marginal distribution of the considered channels. We estimate the decoding error probability of regular LDPC code ensembles over the channels using the marginal distribution and determining the expected Lee weight distribution of a random LDPC code over a finite integer ring. By means of density evolution and finite-length simulations, we estimate the error-correction performance of selected LDPC code ensembles under belief propagation decoding and a low-complexity symbol message passing decoding algorithm and compare the performances. The analysis developed in this paper may serve to design regular low-density parity-check (LDPC) codes over integer residue rings for storage and cryptographic application.","PeriodicalId":13494,"journal":{"name":"IEEE Transactions on Information Theory","volume":"70 11","pages":"7820-7839"},"PeriodicalIF":2.2000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Error-Correction Performance of Regular Ring-Linear LDPC Codes Over Lee Channels\",\"authors\":\"Jessica Bariffi;Hannes Bartz;Gianluigi Liva;Joachim Rosenthal\",\"doi\":\"10.1109/TIT.2024.3436938\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Most low-density parity-check (LDPC) code constructions are considered over finite fields. In this work, we focus on regular LDPC codes over integer residue rings and analyze their performance with respect to the Lee metric. Their error-correction performance is studied over two channel models, in the Lee metric. The first channel model is a discrete memoryless channel, whereas in the second channel model an error vector is drawn uniformly at random from all vectors of a fixed Lee weight. It is known that the two channel laws coincide in the asymptotic regime, meaning that their marginal distributions match. For both channel models, we derive upper bounds on the block error probability in terms of a random coding union bound as well as sphere packing bounds that make use of the marginal distribution of the considered channels. We estimate the decoding error probability of regular LDPC code ensembles over the channels using the marginal distribution and determining the expected Lee weight distribution of a random LDPC code over a finite integer ring. By means of density evolution and finite-length simulations, we estimate the error-correction performance of selected LDPC code ensembles under belief propagation decoding and a low-complexity symbol message passing decoding algorithm and compare the performances. The analysis developed in this paper may serve to design regular low-density parity-check (LDPC) codes over integer residue rings for storage and cryptographic application.\",\"PeriodicalId\":13494,\"journal\":{\"name\":\"IEEE Transactions on Information Theory\",\"volume\":\"70 11\",\"pages\":\"7820-7839\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Information Theory\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10620337/\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Information Theory","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10620337/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Error-Correction Performance of Regular Ring-Linear LDPC Codes Over Lee Channels
Most low-density parity-check (LDPC) code constructions are considered over finite fields. In this work, we focus on regular LDPC codes over integer residue rings and analyze their performance with respect to the Lee metric. Their error-correction performance is studied over two channel models, in the Lee metric. The first channel model is a discrete memoryless channel, whereas in the second channel model an error vector is drawn uniformly at random from all vectors of a fixed Lee weight. It is known that the two channel laws coincide in the asymptotic regime, meaning that their marginal distributions match. For both channel models, we derive upper bounds on the block error probability in terms of a random coding union bound as well as sphere packing bounds that make use of the marginal distribution of the considered channels. We estimate the decoding error probability of regular LDPC code ensembles over the channels using the marginal distribution and determining the expected Lee weight distribution of a random LDPC code over a finite integer ring. By means of density evolution and finite-length simulations, we estimate the error-correction performance of selected LDPC code ensembles under belief propagation decoding and a low-complexity symbol message passing decoding algorithm and compare the performances. The analysis developed in this paper may serve to design regular low-density parity-check (LDPC) codes over integer residue rings for storage and cryptographic application.
期刊介绍:
The IEEE Transactions on Information Theory is a journal that publishes theoretical and experimental papers concerned with the transmission, processing, and utilization of information. The boundaries of acceptable subject matter are intentionally not sharply delimited. Rather, it is hoped that as the focus of research activity changes, a flexible policy will permit this Transactions to follow suit. Current appropriate topics are best reflected by recent Tables of Contents; they are summarized in the titles of editorial areas that appear on the inside front cover.