氩气动力循环非预混氢气燃烧的直接数值模拟

IF 5.3 2区 工程技术 Q2 ENERGY & FUELS Proceedings of the Combustion Institute Pub Date : 2024-08-02 DOI:10.1016/j.proci.2024.105553
D.A. Quan Reyes, Dirk Roekaerts, Jeroen van Oijen
{"title":"氩气动力循环非预混氢气燃烧的直接数值模拟","authors":"D.A. Quan Reyes, Dirk Roekaerts, Jeroen van Oijen","doi":"10.1016/j.proci.2024.105553","DOIUrl":null,"url":null,"abstract":"The Argon Power Cycle (APC) is a compression ignition combustion concept that would substantially enhance efficiency by using argon as the working fluid. When used with hydrogen and oxygen, such closed loop system would be free of emissions. Fundamental understanding on the combustion dynamics of such system is needed in order to determine the best injection strategy. A direct numerical simulation of a fully developed turbulent () reacting case which resembles the direct injection of has been performed. Attention was devoted to (1) understanding the influence of preferential diffusion and turbulence on the ignition behavior and development of flame kernels, (2) determining the composition space accessed by the turbulent and laminar analogue, and (3) finding the types of flamelets that could resemble such composition space. It was found that igniting kernels emerge near the stoichiometric mixture fraction in regions convex to the fuel side, and with high scalar dissipation, in contrast to what has been reported for other fuels in the literature. Furthermore, these igniting kernels can extinguish if exposed to high curvature levels due to the enhanced diffusion of radicals out of the kernel. There is good agreement between the composition space accessed by the turbulent flame and the laminar analogue, but better agreement can be reached by using strained and curved flamelets.","PeriodicalId":408,"journal":{"name":"Proceedings of the Combustion Institute","volume":"40 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Direct numerical simulation of igniting non-premixed hydrogen combustion for the Argon Power Cycle\",\"authors\":\"D.A. Quan Reyes, Dirk Roekaerts, Jeroen van Oijen\",\"doi\":\"10.1016/j.proci.2024.105553\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Argon Power Cycle (APC) is a compression ignition combustion concept that would substantially enhance efficiency by using argon as the working fluid. When used with hydrogen and oxygen, such closed loop system would be free of emissions. Fundamental understanding on the combustion dynamics of such system is needed in order to determine the best injection strategy. A direct numerical simulation of a fully developed turbulent () reacting case which resembles the direct injection of has been performed. Attention was devoted to (1) understanding the influence of preferential diffusion and turbulence on the ignition behavior and development of flame kernels, (2) determining the composition space accessed by the turbulent and laminar analogue, and (3) finding the types of flamelets that could resemble such composition space. It was found that igniting kernels emerge near the stoichiometric mixture fraction in regions convex to the fuel side, and with high scalar dissipation, in contrast to what has been reported for other fuels in the literature. Furthermore, these igniting kernels can extinguish if exposed to high curvature levels due to the enhanced diffusion of radicals out of the kernel. There is good agreement between the composition space accessed by the turbulent flame and the laminar analogue, but better agreement can be reached by using strained and curved flamelets.\",\"PeriodicalId\":408,\"journal\":{\"name\":\"Proceedings of the Combustion Institute\",\"volume\":\"40 1\",\"pages\":\"\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-08-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Combustion Institute\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1016/j.proci.2024.105553\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Combustion Institute","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.proci.2024.105553","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

氩气动力循环(APC)是一种压缩点火燃烧概念,通过使用氩气作为工作流体,可大幅提高效率。当与氢气和氧气一起使用时,这种封闭循环系统将不会产生排放。为了确定最佳的喷射策略,需要从根本上了解这种系统的燃烧动力学。我们对类似直接喷射的完全发展湍流()反应情况进行了直接数值模拟。研究的重点是:(1) 了解优先扩散和湍流对点火行为和焰芯发展的影响;(2) 确定湍流和层流模拟所进入的成分空间;(3) 寻找与这种成分空间相似的小火焰类型。研究发现,点火核出现在燃料侧凸面区域的化学计量混合物分数附近,并且具有较高的标量耗散,这与文献中其他燃料的报道截然不同。此外,由于自由基向核外的扩散增强,这些点火核如果暴露在高曲率水平下就会熄灭。湍流火焰和层流类似物所进入的成分空间具有良好的一致性,但使用应变和弯曲小火焰可以达到更好的一致性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Direct numerical simulation of igniting non-premixed hydrogen combustion for the Argon Power Cycle
The Argon Power Cycle (APC) is a compression ignition combustion concept that would substantially enhance efficiency by using argon as the working fluid. When used with hydrogen and oxygen, such closed loop system would be free of emissions. Fundamental understanding on the combustion dynamics of such system is needed in order to determine the best injection strategy. A direct numerical simulation of a fully developed turbulent () reacting case which resembles the direct injection of has been performed. Attention was devoted to (1) understanding the influence of preferential diffusion and turbulence on the ignition behavior and development of flame kernels, (2) determining the composition space accessed by the turbulent and laminar analogue, and (3) finding the types of flamelets that could resemble such composition space. It was found that igniting kernels emerge near the stoichiometric mixture fraction in regions convex to the fuel side, and with high scalar dissipation, in contrast to what has been reported for other fuels in the literature. Furthermore, these igniting kernels can extinguish if exposed to high curvature levels due to the enhanced diffusion of radicals out of the kernel. There is good agreement between the composition space accessed by the turbulent flame and the laminar analogue, but better agreement can be reached by using strained and curved flamelets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Proceedings of the Combustion Institute
Proceedings of the Combustion Institute 工程技术-工程:化工
CiteScore
7.00
自引率
0.00%
发文量
420
审稿时长
3.0 months
期刊介绍: The Proceedings of the Combustion Institute contains forefront contributions in fundamentals and applications of combustion science. For more than 50 years, the Combustion Institute has served as the peak international society for dissemination of scientific and technical research in the combustion field. In addition to author submissions, the Proceedings of the Combustion Institute includes the Institute''s prestigious invited strategic and topical reviews that represent indispensable resources for emergent research in the field. All papers are subjected to rigorous peer review. Research papers and invited topical reviews; Reaction Kinetics; Soot, PAH, and other large molecules; Diagnostics; Laminar Flames; Turbulent Flames; Heterogeneous Combustion; Spray and Droplet Combustion; Detonations, Explosions & Supersonic Combustion; Fire Research; Stationary Combustion Systems; IC Engine and Gas Turbine Combustion; New Technology Concepts The electronic version of Proceedings of the Combustion Institute contains supplemental material such as reaction mechanisms, illustrating movies, and other data.
期刊最新文献
Modelling collision frequencies and predicting bi-variate agglomerate size distributions for bi-disperse primary particle systems Experimental research on radiation blockage of the fuel vapor and flame in pool fires Micron-sized iron particles as energy carrier: Cycling experiments in a fixed-bed reactor On the inclusion of preferential diffusion effects for PAH tabulation in turbulent non-premixed ethylene/air sooting flames Machine learning assisted characterisation and prediction of droplet distributions in a liquid jet in cross-flow
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1