Giovanni Di Cristina, Ryan Falkenstein-Smith, Ickchan Kim, Savannah Wessies, Matthew Bundy, Mauro Zammarano
{"title":"打造防火安全、无阻燃剂的软垫家具","authors":"Giovanni Di Cristina, Ryan Falkenstein-Smith, Ickchan Kim, Savannah Wessies, Matthew Bundy, Mauro Zammarano","doi":"10.1016/j.proci.2024.105399","DOIUrl":null,"url":null,"abstract":"Upholstered furniture persists as the leading item in deadly US home fires. New state regulations that restrict the use of flame retardants have been introduced across the nation, and the development of flaming tests for upholstered furniture ( National Fire Protection Agency 266) has been halted. In this work, the ability of an open-flame barrier fabric to suppress fire growth initiated from an upholstered sofa in a fully furnished living room-like compartment is demonstrated. The open-flame barrier was specifically developed for this application based on ASTM E 3367 test protocol. The barrier did not contain flame retardants and was made of intrinsically fire-resistant fibers and a para-aramid scrim. No other component of the sofa contained flame retardants. Experiments were conducted under a 10 MW exhaust hood equipped with an oxygen consumption calorimetry system that provides real-time heat release rate measurements. The room was instrumented with various temperature, heat flux, and gas analyzing sensors. Gas analysis of species, such as oxygen, carbon monoxide, and hydrogen cyanide, was carried out on gas samples extracted from the room to determine tenability and the exhaust duct of the hood to estimate species yields. The experiment with full-barrier coverage on the sofa showed no flashover and reduced the total heat release by approximately 44%, compared to the no-barrier coverage experiment. Based on the fractional effective dose, tenability time in the room increased from about 4 min for the no-barrier to 19 min for the partial-barrier and 25 min for the full-barrier. Overall, the application of the barrier fabric extended the tenability and delayed or suppressed flashover, giving more time in any life threatening fire scenario hence remarkably increasing egress time and survival rate without potential health or environmental hazards associated with the use of flame retardants.","PeriodicalId":408,"journal":{"name":"Proceedings of the Combustion Institute","volume":"299 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Towards fire safe and flame-retardant-free upholstered furniture\",\"authors\":\"Giovanni Di Cristina, Ryan Falkenstein-Smith, Ickchan Kim, Savannah Wessies, Matthew Bundy, Mauro Zammarano\",\"doi\":\"10.1016/j.proci.2024.105399\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Upholstered furniture persists as the leading item in deadly US home fires. New state regulations that restrict the use of flame retardants have been introduced across the nation, and the development of flaming tests for upholstered furniture ( National Fire Protection Agency 266) has been halted. In this work, the ability of an open-flame barrier fabric to suppress fire growth initiated from an upholstered sofa in a fully furnished living room-like compartment is demonstrated. The open-flame barrier was specifically developed for this application based on ASTM E 3367 test protocol. The barrier did not contain flame retardants and was made of intrinsically fire-resistant fibers and a para-aramid scrim. No other component of the sofa contained flame retardants. Experiments were conducted under a 10 MW exhaust hood equipped with an oxygen consumption calorimetry system that provides real-time heat release rate measurements. The room was instrumented with various temperature, heat flux, and gas analyzing sensors. Gas analysis of species, such as oxygen, carbon monoxide, and hydrogen cyanide, was carried out on gas samples extracted from the room to determine tenability and the exhaust duct of the hood to estimate species yields. The experiment with full-barrier coverage on the sofa showed no flashover and reduced the total heat release by approximately 44%, compared to the no-barrier coverage experiment. Based on the fractional effective dose, tenability time in the room increased from about 4 min for the no-barrier to 19 min for the partial-barrier and 25 min for the full-barrier. Overall, the application of the barrier fabric extended the tenability and delayed or suppressed flashover, giving more time in any life threatening fire scenario hence remarkably increasing egress time and survival rate without potential health or environmental hazards associated with the use of flame retardants.\",\"PeriodicalId\":408,\"journal\":{\"name\":\"Proceedings of the Combustion Institute\",\"volume\":\"299 1\",\"pages\":\"\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Combustion Institute\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1016/j.proci.2024.105399\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Combustion Institute","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.proci.2024.105399","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Towards fire safe and flame-retardant-free upholstered furniture
Upholstered furniture persists as the leading item in deadly US home fires. New state regulations that restrict the use of flame retardants have been introduced across the nation, and the development of flaming tests for upholstered furniture ( National Fire Protection Agency 266) has been halted. In this work, the ability of an open-flame barrier fabric to suppress fire growth initiated from an upholstered sofa in a fully furnished living room-like compartment is demonstrated. The open-flame barrier was specifically developed for this application based on ASTM E 3367 test protocol. The barrier did not contain flame retardants and was made of intrinsically fire-resistant fibers and a para-aramid scrim. No other component of the sofa contained flame retardants. Experiments were conducted under a 10 MW exhaust hood equipped with an oxygen consumption calorimetry system that provides real-time heat release rate measurements. The room was instrumented with various temperature, heat flux, and gas analyzing sensors. Gas analysis of species, such as oxygen, carbon monoxide, and hydrogen cyanide, was carried out on gas samples extracted from the room to determine tenability and the exhaust duct of the hood to estimate species yields. The experiment with full-barrier coverage on the sofa showed no flashover and reduced the total heat release by approximately 44%, compared to the no-barrier coverage experiment. Based on the fractional effective dose, tenability time in the room increased from about 4 min for the no-barrier to 19 min for the partial-barrier and 25 min for the full-barrier. Overall, the application of the barrier fabric extended the tenability and delayed or suppressed flashover, giving more time in any life threatening fire scenario hence remarkably increasing egress time and survival rate without potential health or environmental hazards associated with the use of flame retardants.
期刊介绍:
The Proceedings of the Combustion Institute contains forefront contributions in fundamentals and applications of combustion science. For more than 50 years, the Combustion Institute has served as the peak international society for dissemination of scientific and technical research in the combustion field. In addition to author submissions, the Proceedings of the Combustion Institute includes the Institute''s prestigious invited strategic and topical reviews that represent indispensable resources for emergent research in the field. All papers are subjected to rigorous peer review.
Research papers and invited topical reviews; Reaction Kinetics; Soot, PAH, and other large molecules; Diagnostics; Laminar Flames; Turbulent Flames; Heterogeneous Combustion; Spray and Droplet Combustion; Detonations, Explosions & Supersonic Combustion; Fire Research; Stationary Combustion Systems; IC Engine and Gas Turbine Combustion; New Technology Concepts
The electronic version of Proceedings of the Combustion Institute contains supplemental material such as reaction mechanisms, illustrating movies, and other data.