使用 CSNN 在 ASL-DVS 上执行基于事件的数据处理和分类

Ria Patel, Sujit Tripathy, Zachary Sublett, Seoyoung An, Riya Patel
{"title":"使用 CSNN 在 ASL-DVS 上执行基于事件的数据处理和分类","authors":"Ria Patel, Sujit Tripathy, Zachary Sublett, Seoyoung An, Riya Patel","doi":"arxiv-2408.00611","DOIUrl":null,"url":null,"abstract":"Recent advancements in bio-inspired visual sensing and neuromorphic computing\nhave led to the development of various highly efficient bio-inspired solutions\nwith real-world applications. One notable application integrates event-based\ncameras with spiking neural networks (SNNs) to process event-based sequences\nthat are asynchronous and sparse, making them difficult to handle. In this\nproject, we develop a convolutional spiking neural network (CSNN) architecture\nthat leverages convolutional operations and recurrent properties of a spiking\nneuron to learn the spatial and temporal relations in the ASL-DVS gesture\ndataset. The ASL-DVS gesture dataset is a neuromorphic dataset containing hand\ngestures when displaying 24 letters (A to Y, excluding J and Z due to the\nnature of their symbols) from the American Sign Language (ASL). We performed\nclassification on a pre-processed subset of the full ASL-DVS dataset to\nidentify letter signs and achieved 100\\% training accuracy. Specifically, this\nwas achieved by training in the Google Cloud compute platform while using a\nlearning rate of 0.0005, batch size of 25 (total of 20 batches), 200\niterations, and 10 epochs.","PeriodicalId":501347,"journal":{"name":"arXiv - CS - Neural and Evolutionary Computing","volume":"82 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Using CSNNs to Perform Event-based Data Processing & Classification on ASL-DVS\",\"authors\":\"Ria Patel, Sujit Tripathy, Zachary Sublett, Seoyoung An, Riya Patel\",\"doi\":\"arxiv-2408.00611\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recent advancements in bio-inspired visual sensing and neuromorphic computing\\nhave led to the development of various highly efficient bio-inspired solutions\\nwith real-world applications. One notable application integrates event-based\\ncameras with spiking neural networks (SNNs) to process event-based sequences\\nthat are asynchronous and sparse, making them difficult to handle. In this\\nproject, we develop a convolutional spiking neural network (CSNN) architecture\\nthat leverages convolutional operations and recurrent properties of a spiking\\nneuron to learn the spatial and temporal relations in the ASL-DVS gesture\\ndataset. The ASL-DVS gesture dataset is a neuromorphic dataset containing hand\\ngestures when displaying 24 letters (A to Y, excluding J and Z due to the\\nnature of their symbols) from the American Sign Language (ASL). We performed\\nclassification on a pre-processed subset of the full ASL-DVS dataset to\\nidentify letter signs and achieved 100\\\\% training accuracy. Specifically, this\\nwas achieved by training in the Google Cloud compute platform while using a\\nlearning rate of 0.0005, batch size of 25 (total of 20 batches), 200\\niterations, and 10 epochs.\",\"PeriodicalId\":501347,\"journal\":{\"name\":\"arXiv - CS - Neural and Evolutionary Computing\",\"volume\":\"82 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Neural and Evolutionary Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.00611\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Neural and Evolutionary Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.00611","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

生物启发视觉传感和神经形态计算领域的最新进展开发出了各种具有实际应用价值的高效生物启发解决方案。其中一个值得注意的应用是将基于事件的摄像头与尖峰神经网络(SNN)集成在一起,以处理基于事件的序列,这些序列具有异步性和稀疏性,因此难以处理。在本项目中,我们开发了一种卷积尖峰神经网络(CSNN)架构,利用尖峰神经元的卷积操作和递归特性来学习 ASL-DVS 手势集中的空间和时间关系。ASL-DVS 手势数据集是一个神经形态数据集,包含显示 24 个美国手语(ASL)字母(从 A 到 Y,不包括 J 和 Z,因为它们的符号性质不同)时的手势。我们对完整 ASL-DVS 数据集的预处理子集进行了分类,以识别字母符号,训练准确率达到 100%。具体来说,这是通过在谷歌云计算平台上使用 0.0005 的学习率、25 个批次(共 20 个批次)、200 次iterations 和 10 个 epochs 进行训练实现的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Using CSNNs to Perform Event-based Data Processing & Classification on ASL-DVS
Recent advancements in bio-inspired visual sensing and neuromorphic computing have led to the development of various highly efficient bio-inspired solutions with real-world applications. One notable application integrates event-based cameras with spiking neural networks (SNNs) to process event-based sequences that are asynchronous and sparse, making them difficult to handle. In this project, we develop a convolutional spiking neural network (CSNN) architecture that leverages convolutional operations and recurrent properties of a spiking neuron to learn the spatial and temporal relations in the ASL-DVS gesture dataset. The ASL-DVS gesture dataset is a neuromorphic dataset containing hand gestures when displaying 24 letters (A to Y, excluding J and Z due to the nature of their symbols) from the American Sign Language (ASL). We performed classification on a pre-processed subset of the full ASL-DVS dataset to identify letter signs and achieved 100\% training accuracy. Specifically, this was achieved by training in the Google Cloud compute platform while using a learning rate of 0.0005, batch size of 25 (total of 20 batches), 200 iterations, and 10 epochs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Hardware-Friendly Implementation of Physical Reservoir Computing with CMOS-based Time-domain Analog Spiking Neurons Self-Contrastive Forward-Forward Algorithm Bio-Inspired Mamba: Temporal Locality and Bioplausible Learning in Selective State Space Models PReLU: Yet Another Single-Layer Solution to the XOR Problem Inferno: An Extensible Framework for Spiking Neural Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1