用于固体氧化物燃料电池的掺钇氧化铋和钇稳定氧化锆烧结复合电解质

IF 2.6 4区 化学 Q3 ELECTROCHEMISTRY Journal of Solid State Electrochemistry Pub Date : 2024-08-02 DOI:10.1007/s10008-024-06030-1
Yuling Xia, Lijie Zhang, Kang Zhu, Binze Zhang, Changrong Xia
{"title":"用于固体氧化物燃料电池的掺钇氧化铋和钇稳定氧化锆烧结复合电解质","authors":"Yuling Xia, Lijie Zhang, Kang Zhu, Binze Zhang, Changrong Xia","doi":"10.1007/s10008-024-06030-1","DOIUrl":null,"url":null,"abstract":"<p>Solid oxide fuel cell (SOFC) with high conversion efficiency has drawn great attention for a sustainable future. Its electrolyte, typically yttria-stabilized zirconia (YSZ), is usually sintered above 1400 °C with commercially available powder materials. To lower the sintering temperature, yttria-doped bismuth oxide (YDB) is investigated in this work as an additive to form composite electrolytes. Dilatometric analysis reveals that the temperature corresponding to the maximum shrinkage rate is decreased from 1260 to 870 °C by YDB. Meanwhile, adding YDB results in the formation of poor conductive second phase monoclinic zirconia (m-ZrO<sub>2</sub>), especially when YDB content reaches 3 mol%. Thus, total conductivity decreases and then increases with YDB content. It is noted that the grain boundary conductivity is substantially improved, which is caused by bismuth enrichment at the grain boundary region of the dense composite electrolyte.</p>","PeriodicalId":665,"journal":{"name":"Journal of Solid State Electrochemistry","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sintering composite electrolytes of yttria-doped bismuth oxide and yttria-stabilized zirconia for solid oxide fuel cells\",\"authors\":\"Yuling Xia, Lijie Zhang, Kang Zhu, Binze Zhang, Changrong Xia\",\"doi\":\"10.1007/s10008-024-06030-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Solid oxide fuel cell (SOFC) with high conversion efficiency has drawn great attention for a sustainable future. Its electrolyte, typically yttria-stabilized zirconia (YSZ), is usually sintered above 1400 °C with commercially available powder materials. To lower the sintering temperature, yttria-doped bismuth oxide (YDB) is investigated in this work as an additive to form composite electrolytes. Dilatometric analysis reveals that the temperature corresponding to the maximum shrinkage rate is decreased from 1260 to 870 °C by YDB. Meanwhile, adding YDB results in the formation of poor conductive second phase monoclinic zirconia (m-ZrO<sub>2</sub>), especially when YDB content reaches 3 mol%. Thus, total conductivity decreases and then increases with YDB content. It is noted that the grain boundary conductivity is substantially improved, which is caused by bismuth enrichment at the grain boundary region of the dense composite electrolyte.</p>\",\"PeriodicalId\":665,\"journal\":{\"name\":\"Journal of Solid State Electrochemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-08-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Solid State Electrochemistry\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s10008-024-06030-1\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Solid State Electrochemistry","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10008-024-06030-1","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

摘要

具有高转换效率的固体氧化物燃料电池(SOFC)在可持续发展的未来备受关注。其电解质通常为钇稳定氧化锆(YSZ),通常使用市售粉末材料在 1400 °C 以上烧结。为了降低烧结温度,本研究将掺钇氧化铋(YDB)作为添加剂,以形成复合电解质。稀释分析表明,YDB 可将最大收缩率对应的温度从 1260 ℃ 降至 870 ℃。同时,添加 YDB 会形成导电性较差的第二相单斜氧化锆(m-ZrO2),尤其是当 YDB 含量达到 3 摩尔%时。因此,随着 YDB 含量的增加,总电导率先降低后升高。值得注意的是,晶界电导率得到了大幅提高,这是由于铋在致密复合电解质的晶界区域富集所致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Sintering composite electrolytes of yttria-doped bismuth oxide and yttria-stabilized zirconia for solid oxide fuel cells

Solid oxide fuel cell (SOFC) with high conversion efficiency has drawn great attention for a sustainable future. Its electrolyte, typically yttria-stabilized zirconia (YSZ), is usually sintered above 1400 °C with commercially available powder materials. To lower the sintering temperature, yttria-doped bismuth oxide (YDB) is investigated in this work as an additive to form composite electrolytes. Dilatometric analysis reveals that the temperature corresponding to the maximum shrinkage rate is decreased from 1260 to 870 °C by YDB. Meanwhile, adding YDB results in the formation of poor conductive second phase monoclinic zirconia (m-ZrO2), especially when YDB content reaches 3 mol%. Thus, total conductivity decreases and then increases with YDB content. It is noted that the grain boundary conductivity is substantially improved, which is caused by bismuth enrichment at the grain boundary region of the dense composite electrolyte.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.80
自引率
4.00%
发文量
227
审稿时长
4.1 months
期刊介绍: The Journal of Solid State Electrochemistry is devoted to all aspects of solid-state chemistry and solid-state physics in electrochemistry. The Journal of Solid State Electrochemistry publishes papers on all aspects of electrochemistry of solid compounds, including experimental and theoretical, basic and applied work. It equally publishes papers on the thermodynamics and kinetics of electrochemical reactions if at least one actively participating phase is solid. Also of interest are articles on the transport of ions and electrons in solids whenever these processes are relevant to electrochemical reactions and on the use of solid-state electrochemical reactions in the analysis of solids and their surfaces. The journal covers solid-state electrochemistry and focusses on the following fields: mechanisms of solid-state electrochemical reactions, semiconductor electrochemistry, electrochemical batteries, accumulators and fuel cells, electrochemical mineral leaching, galvanic metal plating, electrochemical potential memory devices, solid-state electrochemical sensors, ion and electron transport in solid materials and polymers, electrocatalysis, photoelectrochemistry, corrosion of solid materials, solid-state electroanalysis, electrochemical machining of materials, electrochromism and electrochromic devices, new electrochemical solid-state synthesis. The Journal of Solid State Electrochemistry makes the professional in research and industry aware of this swift progress and its importance for future developments and success in the above-mentioned fields.
期刊最新文献
Voltammetric determination of hydroxymethylfurfural in honey using screen-printed carbon electrodes: optimization and in-house validation tests Comparative analysis of pH sensing performance of nitrogen-doped ZnO on screen-printed silver and carbon electrodes Effect of electrodeposition of AuPt nanostructure thin films on the electrocatalytic activity of counter electrodes: DSSCs application Study of superhydrophobicity and corrosion resistance of electrodeposited Zn-Ni-HDTMS coating Screen-printed carbon electrode modified with AgNPs obtained via green synthesis for acetaminophen determination
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1