基因关联和机器学习提高了发现和预测 1 型糖尿病的能力

Carolyn McGrail, Timothy J Sears, Parul Kudtarkar, Hannah Carter, Kyle J Gaulton
{"title":"基因关联和机器学习提高了发现和预测 1 型糖尿病的能力","authors":"Carolyn McGrail, Timothy J Sears, Parul Kudtarkar, Hannah Carter, Kyle J Gaulton","doi":"10.1101/2024.07.31.24311310","DOIUrl":null,"url":null,"abstract":"Type 1 diabetes (T1D) has a large genetic component, and expanded genetic studies of T1D can lead to novel biological and therapeutic discovery and improved risk prediction. In this study, we performed genetic association and fine-mapping analyses in 817,718 European ancestry samples genome-wide and 29,746 samples at the MHC locus, which identified 165 independent risk signals for T1D of which 19 were novel. We used risk variants to train a machine learning model (named T1GRS) to predict T1D, which highly differentiated T1D from non-disease and type 2 diabetes (T2D) in Europeans as well as African Americans at or beyond the level of current standards. We identified extensive non-linear interactions between risk loci in T1GRS, for example between HLA-DQB1*57 and INS, coding and non-coding HLA alleles, and DEXI, INS and other beta cell loci, that provided mechanistic insight and improved risk prediction. T1D individuals formed distinct clusters based on genetic features from T1GRS which had significant differences in age of onset, HbA1c, and renal disease severity. Finally, we provided T1GRS in formats to enhance accessibility of risk prediction to any user and computing environment. Overall, the improved genetic discovery and prediction of T1D will have wide clinical, therapeutic, and research applications.","PeriodicalId":501375,"journal":{"name":"medRxiv - Genetic and Genomic Medicine","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Genetic association and machine learning improves discovery and prediction of type 1 diabetes\",\"authors\":\"Carolyn McGrail, Timothy J Sears, Parul Kudtarkar, Hannah Carter, Kyle J Gaulton\",\"doi\":\"10.1101/2024.07.31.24311310\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Type 1 diabetes (T1D) has a large genetic component, and expanded genetic studies of T1D can lead to novel biological and therapeutic discovery and improved risk prediction. In this study, we performed genetic association and fine-mapping analyses in 817,718 European ancestry samples genome-wide and 29,746 samples at the MHC locus, which identified 165 independent risk signals for T1D of which 19 were novel. We used risk variants to train a machine learning model (named T1GRS) to predict T1D, which highly differentiated T1D from non-disease and type 2 diabetes (T2D) in Europeans as well as African Americans at or beyond the level of current standards. We identified extensive non-linear interactions between risk loci in T1GRS, for example between HLA-DQB1*57 and INS, coding and non-coding HLA alleles, and DEXI, INS and other beta cell loci, that provided mechanistic insight and improved risk prediction. T1D individuals formed distinct clusters based on genetic features from T1GRS which had significant differences in age of onset, HbA1c, and renal disease severity. Finally, we provided T1GRS in formats to enhance accessibility of risk prediction to any user and computing environment. Overall, the improved genetic discovery and prediction of T1D will have wide clinical, therapeutic, and research applications.\",\"PeriodicalId\":501375,\"journal\":{\"name\":\"medRxiv - Genetic and Genomic Medicine\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"medRxiv - Genetic and Genomic Medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2024.07.31.24311310\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"medRxiv - Genetic and Genomic Medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.07.31.24311310","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

1 型糖尿病(T1D)有很大的遗传因素,扩大对 T1D 的遗传研究可以发现新的生物学和治疗方法,并改善风险预测。在这项研究中,我们对 817,718 份欧洲血统样本进行了全基因组遗传关联分析和精细图谱分析,并对 29,746 份样本进行了 MHC 位点分析,结果发现了 165 个独立的 T1D 风险信号,其中 19 个是新的风险信号。我们利用风险变异来训练一个机器学习模型(命名为 T1GRS),以预测 T1D,该模型能高度区分欧洲人和非裔美国人中的 T1D 与非疾病和 2 型糖尿病(T2D),达到或超过现行标准的水平。我们在 T1GRS 中发现了风险位点之间广泛的非线性相互作用,例如 HLA-DQB1*57 和 INS、编码和非编码 HLA 等位基因以及 DEXI、INS 和其他 beta 细胞位点之间的相互作用,这些相互作用提供了机理上的见解并改进了风险预测。根据 T1GRS 的遗传特征,T1D 患者形成了不同的群组,这些群组在发病年龄、HbA1c 和肾病严重程度方面存在显著差异。最后,我们提供了 T1GRS 的格式,使任何用户和计算环境都能更方便地进行风险预测。总之,改进 T1D 的基因发现和预测将在临床、治疗和研究方面得到广泛应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Genetic association and machine learning improves discovery and prediction of type 1 diabetes
Type 1 diabetes (T1D) has a large genetic component, and expanded genetic studies of T1D can lead to novel biological and therapeutic discovery and improved risk prediction. In this study, we performed genetic association and fine-mapping analyses in 817,718 European ancestry samples genome-wide and 29,746 samples at the MHC locus, which identified 165 independent risk signals for T1D of which 19 were novel. We used risk variants to train a machine learning model (named T1GRS) to predict T1D, which highly differentiated T1D from non-disease and type 2 diabetes (T2D) in Europeans as well as African Americans at or beyond the level of current standards. We identified extensive non-linear interactions between risk loci in T1GRS, for example between HLA-DQB1*57 and INS, coding and non-coding HLA alleles, and DEXI, INS and other beta cell loci, that provided mechanistic insight and improved risk prediction. T1D individuals formed distinct clusters based on genetic features from T1GRS which had significant differences in age of onset, HbA1c, and renal disease severity. Finally, we provided T1GRS in formats to enhance accessibility of risk prediction to any user and computing environment. Overall, the improved genetic discovery and prediction of T1D will have wide clinical, therapeutic, and research applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Identifying individuals at risk for surgical supravalvar aortic stenosis by polygenic risk score with graded phenotyping Exome wide association study for blood lipids in 1,158,017 individuals from diverse populations Allelic effects on KLHL17 expression likely mediated by JunB/D underlie a PDAC GWAS signal at chr1p36.33 Genetic associations between SGLT2 inhibition, DPP4 inhibition or GLP1R agonism and prostate cancer risk: a two-sample Mendelian randomisation study A Genome-wide Association Study Identifies Novel Genetic Variants Associated with Knee Pain in the UK Biobank (N = 441,757)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1