Antoine M. Dujon, Beata Ujvari, Sophie Tissot, Jordan Meliani, Océane Rieu, Nikita Stepanskyy, Rodrigo Hamede, Jácint Tokolyi, Aurora Nedelcu, Frédéric Thomas
{"title":"现代致癌环境对野生动物物种的适应性、进化和保护的复杂影响。","authors":"Antoine M. Dujon, Beata Ujvari, Sophie Tissot, Jordan Meliani, Océane Rieu, Nikita Stepanskyy, Rodrigo Hamede, Jácint Tokolyi, Aurora Nedelcu, Frédéric Thomas","doi":"10.1111/eva.13763","DOIUrl":null,"url":null,"abstract":"<p>Growing evidence indicates that human activities are causing cancer rates to rise in both human and wildlife populations. This is due to the inability of ancestral anti-cancer defences to cope with modern environmental risks. The evolutionary mismatch between modern oncogenic risks and evolved cancer defences has far-reaching effects on various biological aspects at different timeframes, demanding a comprehensive study of the biology and evolutionary ecology of the affected species. Firstly, the increased activation of anti-cancer defences leads to excessive energy expenditure, affecting other biological functions and potentially causing health issues like autoimmune diseases. Secondly, tumorigenesis itself can impact important fitness-related parameters such as competitiveness, predator evasion, resistance to parasites, and dispersal capacity. Thirdly, rising cancer risks can influence the species' life-history traits, often favoring early reproduction to offset fitness costs associated with cancer. However, this strategy has its limits, and it may not ensure the sustainability of the species if cancer risks continue to rise. Lastly, some species may evolve additional anti-cancer defences, with uncertain consequences for their biology and future evolutionary path. In summary, we argue that the effects of increased exposure to cancer-causing substances on wildlife are complex, ranging from immediate responses to long-term evolutionary changes. Understanding these processes, especially in the context of conservation biology, is urgently needed.</p>","PeriodicalId":168,"journal":{"name":"Evolutionary Applications","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11294924/pdf/","citationCount":"0","resultStr":"{\"title\":\"The complex effects of modern oncogenic environments on the fitness, evolution and conservation of wildlife species\",\"authors\":\"Antoine M. Dujon, Beata Ujvari, Sophie Tissot, Jordan Meliani, Océane Rieu, Nikita Stepanskyy, Rodrigo Hamede, Jácint Tokolyi, Aurora Nedelcu, Frédéric Thomas\",\"doi\":\"10.1111/eva.13763\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Growing evidence indicates that human activities are causing cancer rates to rise in both human and wildlife populations. This is due to the inability of ancestral anti-cancer defences to cope with modern environmental risks. The evolutionary mismatch between modern oncogenic risks and evolved cancer defences has far-reaching effects on various biological aspects at different timeframes, demanding a comprehensive study of the biology and evolutionary ecology of the affected species. Firstly, the increased activation of anti-cancer defences leads to excessive energy expenditure, affecting other biological functions and potentially causing health issues like autoimmune diseases. Secondly, tumorigenesis itself can impact important fitness-related parameters such as competitiveness, predator evasion, resistance to parasites, and dispersal capacity. Thirdly, rising cancer risks can influence the species' life-history traits, often favoring early reproduction to offset fitness costs associated with cancer. However, this strategy has its limits, and it may not ensure the sustainability of the species if cancer risks continue to rise. Lastly, some species may evolve additional anti-cancer defences, with uncertain consequences for their biology and future evolutionary path. In summary, we argue that the effects of increased exposure to cancer-causing substances on wildlife are complex, ranging from immediate responses to long-term evolutionary changes. Understanding these processes, especially in the context of conservation biology, is urgently needed.</p>\",\"PeriodicalId\":168,\"journal\":{\"name\":\"Evolutionary Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-08-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11294924/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Evolutionary Applications\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/eva.13763\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"EVOLUTIONARY BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Evolutionary Applications","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/eva.13763","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"EVOLUTIONARY BIOLOGY","Score":null,"Total":0}
The complex effects of modern oncogenic environments on the fitness, evolution and conservation of wildlife species
Growing evidence indicates that human activities are causing cancer rates to rise in both human and wildlife populations. This is due to the inability of ancestral anti-cancer defences to cope with modern environmental risks. The evolutionary mismatch between modern oncogenic risks and evolved cancer defences has far-reaching effects on various biological aspects at different timeframes, demanding a comprehensive study of the biology and evolutionary ecology of the affected species. Firstly, the increased activation of anti-cancer defences leads to excessive energy expenditure, affecting other biological functions and potentially causing health issues like autoimmune diseases. Secondly, tumorigenesis itself can impact important fitness-related parameters such as competitiveness, predator evasion, resistance to parasites, and dispersal capacity. Thirdly, rising cancer risks can influence the species' life-history traits, often favoring early reproduction to offset fitness costs associated with cancer. However, this strategy has its limits, and it may not ensure the sustainability of the species if cancer risks continue to rise. Lastly, some species may evolve additional anti-cancer defences, with uncertain consequences for their biology and future evolutionary path. In summary, we argue that the effects of increased exposure to cancer-causing substances on wildlife are complex, ranging from immediate responses to long-term evolutionary changes. Understanding these processes, especially in the context of conservation biology, is urgently needed.
期刊介绍:
Evolutionary Applications is a fully peer reviewed open access journal. It publishes papers that utilize concepts from evolutionary biology to address biological questions of health, social and economic relevance. Papers are expected to employ evolutionary concepts or methods to make contributions to areas such as (but not limited to): medicine, agriculture, forestry, exploitation and management (fisheries and wildlife), aquaculture, conservation biology, environmental sciences (including climate change and invasion biology), microbiology, and toxicology. All taxonomic groups are covered from microbes, fungi, plants and animals. In order to better serve the community, we also now strongly encourage submissions of papers making use of modern molecular and genetic methods (population and functional genomics, transcriptomics, proteomics, epigenetics, quantitative genetics, association and linkage mapping) to address important questions in any of these disciplines and in an applied evolutionary framework. Theoretical, empirical, synthesis or perspective papers are welcome.