Shujuan Yang , Qian Zhao , Dan Wang , Ting Zhang , Zhi Zhong , Lai-Yu Kwok , Mei Bai , Zhihong Sun
{"title":"保加利亚乳杆菌 M58 和嗜热链球菌 S10 之间的相互作用可增强发酵乳的质地和风味:代谢组学分析的启示。","authors":"Shujuan Yang , Qian Zhao , Dan Wang , Ting Zhang , Zhi Zhong , Lai-Yu Kwok , Mei Bai , Zhihong Sun","doi":"10.3168/jds.2024-25217","DOIUrl":null,"url":null,"abstract":"<div><div><em>Lactobacillus delbrueckii</em> ssp. <em>bulgaricus</em> M-58 (M58) and <em>Streptococcus thermophilus</em> S10 (S10) are both dairy starter strains known for their favorable fermentation characteristics. Therefore, this research aimed to study the effects of 1-d low-temperature ripening on the physicochemical properties and metabolomics of fermented milk. Initially, the performance of single (M58 or S10) and dual (M58+S10) strain fermentation was assessed, revealing that the M58+S10 combination resulted in a shortened fermentation time, a stable gel structure, and desirable viscosity, suggesting positive strain interactions. Subsequently, nontargeted metabolomics analyses using liquid chromatography-MS and GC-MS were performed to comparatively analyze M58+S10 fermented milk samples collected at the end of fermentation and after 1 d of low-temperature ripening. The results showed a significant increase in almost all small peptides and dodecanedioic acid in the samples after 1 d of ripening, although there was a substantial decrease in indole and amino acid metabolites. Moreover, notable increases were observed in high-quality flavor compounds, such as geraniol, delta-nonalactone, 1-hexanol,2-ethyl-, methyl jasmonate, and undecanal. This study provides valuable insights into the fermentation characteristics of the dual bacterial starter consisting of M58 and S10 strains and highlights the specific contribution of the low-temperature ripening step to the overall quality of fermented milk.</div></div>","PeriodicalId":354,"journal":{"name":"Journal of Dairy Science","volume":"107 11","pages":"Pages 9015-9035"},"PeriodicalIF":3.7000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The interaction between Lactobacillus delbrueckii ssp. bulgaricus M-58 and Streptococcus thermophilus S10 can enhance the texture and flavor profile of fermented milk: Insights from metabolomics analysis\",\"authors\":\"Shujuan Yang , Qian Zhao , Dan Wang , Ting Zhang , Zhi Zhong , Lai-Yu Kwok , Mei Bai , Zhihong Sun\",\"doi\":\"10.3168/jds.2024-25217\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div><em>Lactobacillus delbrueckii</em> ssp. <em>bulgaricus</em> M-58 (M58) and <em>Streptococcus thermophilus</em> S10 (S10) are both dairy starter strains known for their favorable fermentation characteristics. Therefore, this research aimed to study the effects of 1-d low-temperature ripening on the physicochemical properties and metabolomics of fermented milk. Initially, the performance of single (M58 or S10) and dual (M58+S10) strain fermentation was assessed, revealing that the M58+S10 combination resulted in a shortened fermentation time, a stable gel structure, and desirable viscosity, suggesting positive strain interactions. Subsequently, nontargeted metabolomics analyses using liquid chromatography-MS and GC-MS were performed to comparatively analyze M58+S10 fermented milk samples collected at the end of fermentation and after 1 d of low-temperature ripening. The results showed a significant increase in almost all small peptides and dodecanedioic acid in the samples after 1 d of ripening, although there was a substantial decrease in indole and amino acid metabolites. Moreover, notable increases were observed in high-quality flavor compounds, such as geraniol, delta-nonalactone, 1-hexanol,2-ethyl-, methyl jasmonate, and undecanal. This study provides valuable insights into the fermentation characteristics of the dual bacterial starter consisting of M58 and S10 strains and highlights the specific contribution of the low-temperature ripening step to the overall quality of fermented milk.</div></div>\",\"PeriodicalId\":354,\"journal\":{\"name\":\"Journal of Dairy Science\",\"volume\":\"107 11\",\"pages\":\"Pages 9015-9035\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Dairy Science\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022030224010555\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURE, DAIRY & ANIMAL SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Dairy Science","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022030224010555","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, DAIRY & ANIMAL SCIENCE","Score":null,"Total":0}
The interaction between Lactobacillus delbrueckii ssp. bulgaricus M-58 and Streptococcus thermophilus S10 can enhance the texture and flavor profile of fermented milk: Insights from metabolomics analysis
Lactobacillus delbrueckii ssp. bulgaricus M-58 (M58) and Streptococcus thermophilus S10 (S10) are both dairy starter strains known for their favorable fermentation characteristics. Therefore, this research aimed to study the effects of 1-d low-temperature ripening on the physicochemical properties and metabolomics of fermented milk. Initially, the performance of single (M58 or S10) and dual (M58+S10) strain fermentation was assessed, revealing that the M58+S10 combination resulted in a shortened fermentation time, a stable gel structure, and desirable viscosity, suggesting positive strain interactions. Subsequently, nontargeted metabolomics analyses using liquid chromatography-MS and GC-MS were performed to comparatively analyze M58+S10 fermented milk samples collected at the end of fermentation and after 1 d of low-temperature ripening. The results showed a significant increase in almost all small peptides and dodecanedioic acid in the samples after 1 d of ripening, although there was a substantial decrease in indole and amino acid metabolites. Moreover, notable increases were observed in high-quality flavor compounds, such as geraniol, delta-nonalactone, 1-hexanol,2-ethyl-, methyl jasmonate, and undecanal. This study provides valuable insights into the fermentation characteristics of the dual bacterial starter consisting of M58 and S10 strains and highlights the specific contribution of the low-temperature ripening step to the overall quality of fermented milk.
期刊介绍:
The official journal of the American Dairy Science Association®, Journal of Dairy Science® (JDS) is the leading peer-reviewed general dairy research journal in the world. JDS readers represent education, industry, and government agencies in more than 70 countries with interests in biochemistry, breeding, economics, engineering, environment, food science, genetics, microbiology, nutrition, pathology, physiology, processing, public health, quality assurance, and sanitation.