利用相转移策略高效估算维生素 C 药片中的抗坏血酸含量

IF 2.6 4区 生物学 Q2 BIOCHEMICAL RESEARCH METHODS Analytical biochemistry Pub Date : 2024-08-03 DOI:10.1016/j.ab.2024.115635
Wei-Qi Xie , Yi-Xan Gong
{"title":"利用相转移策略高效估算维生素 C 药片中的抗坏血酸含量","authors":"Wei-Qi Xie ,&nbsp;Yi-Xan Gong","doi":"10.1016/j.ab.2024.115635","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we introduced a novel phase-transfer strategy tailored for the efficient batch detection of ascorbic acid in vitamin C tablets. This method entailed the reaction between ascorbic acid and an excess of potassium permanganate. Subsequent reaction of the residual potassium permanganate with sodium oxalate in an acidic medium led to the generation of carbon dioxide. The quantification of the produced carbon dioxide was achieved using headspace GC, enabling the indirect measurement of ascorbic acid. The obtained findings revealed that the headspace method exhibited satisfied precision with a relative standard deviation of less than 2.11 % and high sensitivity with a limit of quantitation of 0.27 μmol. These results firmly establish the reliability of this innovative approach for determining ascorbic acid. In addition, the highly automated feature of headspace method significantly enhances the efficiency of batch sample detection and reduces the errors caused by human operation. Thus, the adoption of the transformed phase strategy has demonstrated its effectiveness in assessing ascorbic acid, especially for large-scale sample analysis in industrial applications, owing to its efficiency, precision, and sensitivity.</p></div>","PeriodicalId":7830,"journal":{"name":"Analytical biochemistry","volume":"695 ","pages":"Article 115635"},"PeriodicalIF":2.6000,"publicationDate":"2024-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficient Estimation of ascorbic acid in vitamin C tablets enabled by phase-transfer strategy\",\"authors\":\"Wei-Qi Xie ,&nbsp;Yi-Xan Gong\",\"doi\":\"10.1016/j.ab.2024.115635\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we introduced a novel phase-transfer strategy tailored for the efficient batch detection of ascorbic acid in vitamin C tablets. This method entailed the reaction between ascorbic acid and an excess of potassium permanganate. Subsequent reaction of the residual potassium permanganate with sodium oxalate in an acidic medium led to the generation of carbon dioxide. The quantification of the produced carbon dioxide was achieved using headspace GC, enabling the indirect measurement of ascorbic acid. The obtained findings revealed that the headspace method exhibited satisfied precision with a relative standard deviation of less than 2.11 % and high sensitivity with a limit of quantitation of 0.27 μmol. These results firmly establish the reliability of this innovative approach for determining ascorbic acid. In addition, the highly automated feature of headspace method significantly enhances the efficiency of batch sample detection and reduces the errors caused by human operation. Thus, the adoption of the transformed phase strategy has demonstrated its effectiveness in assessing ascorbic acid, especially for large-scale sample analysis in industrial applications, owing to its efficiency, precision, and sensitivity.</p></div>\",\"PeriodicalId\":7830,\"journal\":{\"name\":\"Analytical biochemistry\",\"volume\":\"695 \",\"pages\":\"Article 115635\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-08-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analytical biochemistry\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0003269724001799\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical biochemistry","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0003269724001799","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们介绍了一种新颖的相转移策略,该策略专为高效批量检测维生素 C 药片中的抗坏血酸而定制。这种方法需要抗坏血酸与过量的高锰酸钾发生反应。随后,残留的高锰酸钾与草酸钠在酸性介质中反应,生成二氧化碳。利用顶空气相色谱仪对产生的二氧化碳进行定量,从而间接测量抗坏血酸。研究结果表明,顶空气相色谱法具有良好的精密度(相对标准偏差小于 2.11%)和灵敏度(定量限为 0.27 μmol)。这些结果充分证明了这一创新方法测定抗坏血酸的可靠性。此外,顶空法高度自动化的特点大大提高了批量样品检测的效率,减少了人为操作造成的误差。因此,转化相策略的采用证明了其在评估抗坏血酸方面的有效性,尤其是在工业应用中的大规模样品分析方面,因为其高效、精确和灵敏。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Efficient Estimation of ascorbic acid in vitamin C tablets enabled by phase-transfer strategy

In this paper, we introduced a novel phase-transfer strategy tailored for the efficient batch detection of ascorbic acid in vitamin C tablets. This method entailed the reaction between ascorbic acid and an excess of potassium permanganate. Subsequent reaction of the residual potassium permanganate with sodium oxalate in an acidic medium led to the generation of carbon dioxide. The quantification of the produced carbon dioxide was achieved using headspace GC, enabling the indirect measurement of ascorbic acid. The obtained findings revealed that the headspace method exhibited satisfied precision with a relative standard deviation of less than 2.11 % and high sensitivity with a limit of quantitation of 0.27 μmol. These results firmly establish the reliability of this innovative approach for determining ascorbic acid. In addition, the highly automated feature of headspace method significantly enhances the efficiency of batch sample detection and reduces the errors caused by human operation. Thus, the adoption of the transformed phase strategy has demonstrated its effectiveness in assessing ascorbic acid, especially for large-scale sample analysis in industrial applications, owing to its efficiency, precision, and sensitivity.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Analytical biochemistry
Analytical biochemistry 生物-分析化学
CiteScore
5.70
自引率
0.00%
发文量
283
审稿时长
44 days
期刊介绍: The journal''s title Analytical Biochemistry: Methods in the Biological Sciences declares its broad scope: methods for the basic biological sciences that include biochemistry, molecular genetics, cell biology, proteomics, immunology, bioinformatics and wherever the frontiers of research take the field. The emphasis is on methods from the strictly analytical to the more preparative that would include novel approaches to protein purification as well as improvements in cell and organ culture. The actual techniques are equally inclusive ranging from aptamers to zymology. The journal has been particularly active in: -Analytical techniques for biological molecules- Aptamer selection and utilization- Biosensors- Chromatography- Cloning, sequencing and mutagenesis- Electrochemical methods- Electrophoresis- Enzyme characterization methods- Immunological approaches- Mass spectrometry of proteins and nucleic acids- Metabolomics- Nano level techniques- Optical spectroscopy in all its forms. The journal is reluctant to include most drug and strictly clinical studies as there are more suitable publication platforms for these types of papers.
期刊最新文献
A biocompatible fluorescent probe for endogenous hydrogen sulfide detection and imaging A novel colorimetric assay for the detection of urinary N1, N12-diacetylspermine, a known biomarker for colorectal cancer Assays to measure small molecule Hsp70 agonist activity in vitro and in vivo Development of an assay to quantify tranexamic acid levels in plasma Optimization of a high throughput screening platform to identify inhibitors of asymmetric diadenosine polyphosphatases
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1