{"title":"通过机器学习探索多动症儿童大脑前额叶皮层的作用:影响与启示。","authors":"Manjusha Pradeep Deshmukh, Mahi Khemchandani, Paramjit Mahesh Thakur","doi":"10.1080/21622965.2024.2378464","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>Attention deficit hyperactivity disorder (ADHD), is a general neurodevelopmental syndrome. This affects both adults and children, causing issues like hyperactivity, inattention, and impulsivity. Diagnosis, typically reliant on patient narratives and questionnaires, can sometimes be inaccurate, leading to distress. We propose utilizing empirical mode decomposition (EMD) for feature extraction and a machine learning (ML) algorithm to categorize ADHD and control.</p><p><strong>Method: </strong>Publicly available Kaggle dataset is used for research. The EMD technique decomposes an electroencephalogram (EEG) waveform to 12 intrinsic mode functions (IMFs). Thirty-one statistical parameters are generated over the first 6 IMFs to create an input feature vector for the deep belief network (DBN) classifier. Principal component analysis (PCA) is utilized to reduce dimension.</p><p><strong>Findings: </strong>Experimental results are compared on prefrontal cortex channels Fp1 and Fp2. After an in-depth evaluation of all metrics, it is observed that, in patients with ADHD, the prefrontal cortex regulates attention, behavior, and emotion. Our findings align with established neuroscience. The critical functions of the brain, such as organization, planning, attention, and decision making, are performed by the frontal lobe.</p><p><strong>Novelty: </strong>Our work provides a novel approach to understanding the disorder's underlying neurobiological mechanisms. It has the potential to deepen our understanding of the condition, improve diagnostic accuracy, personalize treatment methods, and, ultimately, improve outcomes for those affected.</p>","PeriodicalId":8047,"journal":{"name":"Applied Neuropsychology: Child","volume":" ","pages":"1-13"},"PeriodicalIF":1.4000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploring role of prefrontal cortex region of brain in children having ADHD with machine learning: Implications and insights.\",\"authors\":\"Manjusha Pradeep Deshmukh, Mahi Khemchandani, Paramjit Mahesh Thakur\",\"doi\":\"10.1080/21622965.2024.2378464\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objective: </strong>Attention deficit hyperactivity disorder (ADHD), is a general neurodevelopmental syndrome. This affects both adults and children, causing issues like hyperactivity, inattention, and impulsivity. Diagnosis, typically reliant on patient narratives and questionnaires, can sometimes be inaccurate, leading to distress. We propose utilizing empirical mode decomposition (EMD) for feature extraction and a machine learning (ML) algorithm to categorize ADHD and control.</p><p><strong>Method: </strong>Publicly available Kaggle dataset is used for research. The EMD technique decomposes an electroencephalogram (EEG) waveform to 12 intrinsic mode functions (IMFs). Thirty-one statistical parameters are generated over the first 6 IMFs to create an input feature vector for the deep belief network (DBN) classifier. Principal component analysis (PCA) is utilized to reduce dimension.</p><p><strong>Findings: </strong>Experimental results are compared on prefrontal cortex channels Fp1 and Fp2. After an in-depth evaluation of all metrics, it is observed that, in patients with ADHD, the prefrontal cortex regulates attention, behavior, and emotion. Our findings align with established neuroscience. The critical functions of the brain, such as organization, planning, attention, and decision making, are performed by the frontal lobe.</p><p><strong>Novelty: </strong>Our work provides a novel approach to understanding the disorder's underlying neurobiological mechanisms. It has the potential to deepen our understanding of the condition, improve diagnostic accuracy, personalize treatment methods, and, ultimately, improve outcomes for those affected.</p>\",\"PeriodicalId\":8047,\"journal\":{\"name\":\"Applied Neuropsychology: Child\",\"volume\":\" \",\"pages\":\"1-13\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Neuropsychology: Child\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://doi.org/10.1080/21622965.2024.2378464\",\"RegionNum\":4,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Neuropsychology: Child","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1080/21622965.2024.2378464","RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
Exploring role of prefrontal cortex region of brain in children having ADHD with machine learning: Implications and insights.
Objective: Attention deficit hyperactivity disorder (ADHD), is a general neurodevelopmental syndrome. This affects both adults and children, causing issues like hyperactivity, inattention, and impulsivity. Diagnosis, typically reliant on patient narratives and questionnaires, can sometimes be inaccurate, leading to distress. We propose utilizing empirical mode decomposition (EMD) for feature extraction and a machine learning (ML) algorithm to categorize ADHD and control.
Method: Publicly available Kaggle dataset is used for research. The EMD technique decomposes an electroencephalogram (EEG) waveform to 12 intrinsic mode functions (IMFs). Thirty-one statistical parameters are generated over the first 6 IMFs to create an input feature vector for the deep belief network (DBN) classifier. Principal component analysis (PCA) is utilized to reduce dimension.
Findings: Experimental results are compared on prefrontal cortex channels Fp1 and Fp2. After an in-depth evaluation of all metrics, it is observed that, in patients with ADHD, the prefrontal cortex regulates attention, behavior, and emotion. Our findings align with established neuroscience. The critical functions of the brain, such as organization, planning, attention, and decision making, are performed by the frontal lobe.
Novelty: Our work provides a novel approach to understanding the disorder's underlying neurobiological mechanisms. It has the potential to deepen our understanding of the condition, improve diagnostic accuracy, personalize treatment methods, and, ultimately, improve outcomes for those affected.
期刊介绍:
Applied Neuropsychology: Child publishes clinical neuropsychological articles concerning assessment, brain functioning and neuroimaging, neuropsychological treatment, and rehabilitation in children. Full-length articles and brief communications are included. Case studies of child patients carefully assessing the nature, course, or treatment of clinical neuropsychological dysfunctions in the context of scientific literature, are suitable. Review manuscripts addressing critical issues are encouraged. Preference is given to papers of clinical relevance to others in the field. All submitted manuscripts are subject to initial appraisal by the Editor-in-Chief, and, if found suitable for further considerations are peer reviewed by independent, anonymous expert referees. All peer review is single-blind and submission is online via ScholarOne Manuscripts.