{"title":"探索人类糖基转移酶的结构域:突显非催化附加结构域的功能多样性","authors":"Hirokazu Yagi , Katsuki Takagi , Koichi Kato","doi":"10.1016/j.bbagen.2024.130687","DOIUrl":null,"url":null,"abstract":"<div><p>Human glycosyltransferases (GTs) play crucial roles in glycan biosynthesis, exhibiting diverse domain architectures. This study explores the functional diversity of “add-on” domains within human GTs, using data from the AlphaFold Protein Structure Database. Among 215 annotated human GTs, 74 contain one or more add-on domains in addition to their catalytic domain. These domains include lectin folds, fibronectin type III, and thioredoxin-like domains and contribute to substrate specificity, oligomerization, and consequent enzymatic activity. Notably, certain GTs possess dual enzymatic functions due to catalytic add-on domains. The analysis highlights the importance of add-on domains in enzyme functionality and disease implications, such as congenital disorders of glycosylation. This comprehensive overview enhances our understanding of GT domain organization, providing insights into glycosylation mechanisms and potential therapeutic targets.</p></div>","PeriodicalId":8800,"journal":{"name":"Biochimica et biophysica acta. General subjects","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploring domain architectures of human glycosyltransferases: Highlighting the functional diversity of non-catalytic add-on domains\",\"authors\":\"Hirokazu Yagi , Katsuki Takagi , Koichi Kato\",\"doi\":\"10.1016/j.bbagen.2024.130687\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Human glycosyltransferases (GTs) play crucial roles in glycan biosynthesis, exhibiting diverse domain architectures. This study explores the functional diversity of “add-on” domains within human GTs, using data from the AlphaFold Protein Structure Database. Among 215 annotated human GTs, 74 contain one or more add-on domains in addition to their catalytic domain. These domains include lectin folds, fibronectin type III, and thioredoxin-like domains and contribute to substrate specificity, oligomerization, and consequent enzymatic activity. Notably, certain GTs possess dual enzymatic functions due to catalytic add-on domains. The analysis highlights the importance of add-on domains in enzyme functionality and disease implications, such as congenital disorders of glycosylation. This comprehensive overview enhances our understanding of GT domain organization, providing insights into glycosylation mechanisms and potential therapeutic targets.</p></div>\",\"PeriodicalId\":8800,\"journal\":{\"name\":\"Biochimica et biophysica acta. General subjects\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-08-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochimica et biophysica acta. General subjects\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0304416524001302\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochimica et biophysica acta. General subjects","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304416524001302","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Exploring domain architectures of human glycosyltransferases: Highlighting the functional diversity of non-catalytic add-on domains
Human glycosyltransferases (GTs) play crucial roles in glycan biosynthesis, exhibiting diverse domain architectures. This study explores the functional diversity of “add-on” domains within human GTs, using data from the AlphaFold Protein Structure Database. Among 215 annotated human GTs, 74 contain one or more add-on domains in addition to their catalytic domain. These domains include lectin folds, fibronectin type III, and thioredoxin-like domains and contribute to substrate specificity, oligomerization, and consequent enzymatic activity. Notably, certain GTs possess dual enzymatic functions due to catalytic add-on domains. The analysis highlights the importance of add-on domains in enzyme functionality and disease implications, such as congenital disorders of glycosylation. This comprehensive overview enhances our understanding of GT domain organization, providing insights into glycosylation mechanisms and potential therapeutic targets.
期刊介绍:
BBA General Subjects accepts for submission either original, hypothesis-driven studies or reviews covering subjects in biochemistry and biophysics that are considered to have general interest for a wide audience. Manuscripts with interdisciplinary approaches are especially encouraged.