{"title":"将烟草工程作为天然产品生物合成的平台。","authors":"","doi":"10.1016/j.pbi.2024.102611","DOIUrl":null,"url":null,"abstract":"<div><p><em>Nicotiana benthamiana</em> is a model plant, widely used for research. The susceptibility of young plants to <em>Agrobacterium tumefaciens</em> has been utilised for transient gene expression, enabling the production of recombinant proteins at laboratory and commercial scales. More recently, this technique has been used for the rapid prototyping of synthetic genetic circuits and for the elucidation and reconstruction of metabolic pathways. In the last few years, many complex metabolic pathways have been successfully reconstructed in this species. In addition, the availability of improved genomic resources and efficient gene editing tools have enabled the application of sophisticated metabolic engineering approaches to increase the purity and yield of target compounds. In this review, we discuss recent advances in the use of <em>N</em>. <em>benthamiana</em> for understanding and engineering plant metabolism, as well as efforts to improve the utility of this species as a production chassis for natural products.</p></div>","PeriodicalId":11003,"journal":{"name":"Current opinion in plant biology","volume":null,"pages":null},"PeriodicalIF":8.3000,"publicationDate":"2024-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S136952662400102X/pdfft?md5=9875006f9e3dd81a856e01aa5e62a364&pid=1-s2.0-S136952662400102X-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Engineering Nicotiana benthamiana as a platform for natural product biosynthesis\",\"authors\":\"\",\"doi\":\"10.1016/j.pbi.2024.102611\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><em>Nicotiana benthamiana</em> is a model plant, widely used for research. The susceptibility of young plants to <em>Agrobacterium tumefaciens</em> has been utilised for transient gene expression, enabling the production of recombinant proteins at laboratory and commercial scales. More recently, this technique has been used for the rapid prototyping of synthetic genetic circuits and for the elucidation and reconstruction of metabolic pathways. In the last few years, many complex metabolic pathways have been successfully reconstructed in this species. In addition, the availability of improved genomic resources and efficient gene editing tools have enabled the application of sophisticated metabolic engineering approaches to increase the purity and yield of target compounds. In this review, we discuss recent advances in the use of <em>N</em>. <em>benthamiana</em> for understanding and engineering plant metabolism, as well as efforts to improve the utility of this species as a production chassis for natural products.</p></div>\",\"PeriodicalId\":11003,\"journal\":{\"name\":\"Current opinion in plant biology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":8.3000,\"publicationDate\":\"2024-08-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S136952662400102X/pdfft?md5=9875006f9e3dd81a856e01aa5e62a364&pid=1-s2.0-S136952662400102X-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current opinion in plant biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S136952662400102X\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current opinion in plant biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S136952662400102X","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
摘要
烟草是一种广泛用于研究的模式植物。利用幼苗对农杆菌的敏感性进行瞬时基因表达,可在实验室和商业规模上生产重组蛋白质。最近,这种技术还被用于合成基因电路的快速原型设计以及代谢途径的阐明和重建。在过去几年中,已在该物种中成功重建了许多复杂的代谢途径。此外,改进的基因组资源和高效的基因编辑工具的可用性使得复杂的代谢工程方法得以应用,从而提高了目标化合物的纯度和产量。在这篇综述中,我们将讨论利用 N. benthamiana 了解和改造植物代谢的最新进展,以及为提高该物种作为天然产品生产底盘的实用性所做的努力。
Engineering Nicotiana benthamiana as a platform for natural product biosynthesis
Nicotiana benthamiana is a model plant, widely used for research. The susceptibility of young plants to Agrobacterium tumefaciens has been utilised for transient gene expression, enabling the production of recombinant proteins at laboratory and commercial scales. More recently, this technique has been used for the rapid prototyping of synthetic genetic circuits and for the elucidation and reconstruction of metabolic pathways. In the last few years, many complex metabolic pathways have been successfully reconstructed in this species. In addition, the availability of improved genomic resources and efficient gene editing tools have enabled the application of sophisticated metabolic engineering approaches to increase the purity and yield of target compounds. In this review, we discuss recent advances in the use of N. benthamiana for understanding and engineering plant metabolism, as well as efforts to improve the utility of this species as a production chassis for natural products.
期刊介绍:
Current Opinion in Plant Biology builds on Elsevier's reputation for excellence in scientific publishing and long-standing commitment to communicating high quality reproducible research. It is part of the Current Opinion and Research (CO+RE) suite of journals. All CO+RE journals leverage the Current Opinion legacy - of editorial excellence, high-impact, and global reach - to ensure they are a widely read resource that is integral to scientists' workflow.