Bowen Shen , Lin Zhang , Yu Zhou , Feifei Song , Shengping You , Rongxin Su , Wei Qi
{"title":"通过双功能利用乳清粉作为细胞生长和诱导剂生产的底物,在大肠杆菌中高效合成 5-羟色氨酸。","authors":"Bowen Shen , Lin Zhang , Yu Zhou , Feifei Song , Shengping You , Rongxin Su , Wei Qi","doi":"10.1016/j.jbiotec.2024.07.021","DOIUrl":null,"url":null,"abstract":"<div><p>5-Hydroxytryptophan (5-HTP), a precursor of the neurotransmitter serotonin in mammals, has demonstrated efficacy in treating various diseases such as depression, fibromyalgia and obesity. However, conventional biosynthesis methods of 5-HTP are limited by low yield and high reagent and process costs. In this study, the strain C1T7-S337A/F318Y with optimized promoter distribution was obtained, and the 5-HTP yield was 60.30 % higher than that of the initial strain. An efficient fermentation process for 5-HTP synthesis was developed using strain C1T7-S337A/F318Y with whey powder as a substrate for cell growth and inducer production. Shake flask fermentation experiments yielded 1.302 g/L 5-HTP from 2.0 g/L L-tryptophan (L-Trp), surpassing the whole-cell biocatalysis by 42.86 %. Scale-up to a 5 L fermenter further increased the yield to 1.649 g/L. This fermentation strategy substantially slashed reagent cost by 95.39 %, providing a more economically viable and environmentally sustainable route for industrial biosynthesis of 5-HTP. Moreover, it contributes to the broader utilization of whey powder in various industries.</p></div>","PeriodicalId":15153,"journal":{"name":"Journal of biotechnology","volume":"393 ","pages":"Pages 100-108"},"PeriodicalIF":4.1000,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficient synthesis of 5-hydroxytryptophan in Escherichia coli by bifunctional utilization of whey powder as a substrate for cell growth and inducer production\",\"authors\":\"Bowen Shen , Lin Zhang , Yu Zhou , Feifei Song , Shengping You , Rongxin Su , Wei Qi\",\"doi\":\"10.1016/j.jbiotec.2024.07.021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>5-Hydroxytryptophan (5-HTP), a precursor of the neurotransmitter serotonin in mammals, has demonstrated efficacy in treating various diseases such as depression, fibromyalgia and obesity. However, conventional biosynthesis methods of 5-HTP are limited by low yield and high reagent and process costs. In this study, the strain C1T7-S337A/F318Y with optimized promoter distribution was obtained, and the 5-HTP yield was 60.30 % higher than that of the initial strain. An efficient fermentation process for 5-HTP synthesis was developed using strain C1T7-S337A/F318Y with whey powder as a substrate for cell growth and inducer production. Shake flask fermentation experiments yielded 1.302 g/L 5-HTP from 2.0 g/L L-tryptophan (L-Trp), surpassing the whole-cell biocatalysis by 42.86 %. Scale-up to a 5 L fermenter further increased the yield to 1.649 g/L. This fermentation strategy substantially slashed reagent cost by 95.39 %, providing a more economically viable and environmentally sustainable route for industrial biosynthesis of 5-HTP. Moreover, it contributes to the broader utilization of whey powder in various industries.</p></div>\",\"PeriodicalId\":15153,\"journal\":{\"name\":\"Journal of biotechnology\",\"volume\":\"393 \",\"pages\":\"Pages 100-108\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-08-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of biotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0168165624002086\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biotechnology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168165624002086","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Efficient synthesis of 5-hydroxytryptophan in Escherichia coli by bifunctional utilization of whey powder as a substrate for cell growth and inducer production
5-Hydroxytryptophan (5-HTP), a precursor of the neurotransmitter serotonin in mammals, has demonstrated efficacy in treating various diseases such as depression, fibromyalgia and obesity. However, conventional biosynthesis methods of 5-HTP are limited by low yield and high reagent and process costs. In this study, the strain C1T7-S337A/F318Y with optimized promoter distribution was obtained, and the 5-HTP yield was 60.30 % higher than that of the initial strain. An efficient fermentation process for 5-HTP synthesis was developed using strain C1T7-S337A/F318Y with whey powder as a substrate for cell growth and inducer production. Shake flask fermentation experiments yielded 1.302 g/L 5-HTP from 2.0 g/L L-tryptophan (L-Trp), surpassing the whole-cell biocatalysis by 42.86 %. Scale-up to a 5 L fermenter further increased the yield to 1.649 g/L. This fermentation strategy substantially slashed reagent cost by 95.39 %, providing a more economically viable and environmentally sustainable route for industrial biosynthesis of 5-HTP. Moreover, it contributes to the broader utilization of whey powder in various industries.
期刊介绍:
The Journal of Biotechnology has an open access mirror journal, the Journal of Biotechnology: X, sharing the same aims and scope, editorial team, submission system and rigorous peer review.
The Journal provides a medium for the rapid publication of both full-length articles and short communications on novel and innovative aspects of biotechnology. The Journal will accept papers ranging from genetic or molecular biological positions to those covering biochemical, chemical or bioprocess engineering aspects as well as computer application of new software concepts, provided that in each case the material is directly relevant to biotechnological systems. Papers presenting information of a multidisciplinary nature that would not be suitable for publication in a journal devoted to a single discipline, are particularly welcome.