通过计算发现针对猴痘病毒 A42R 拟蛋白的三肽抑制剂。

IF 2.7 4区 生物学 Q2 BIOCHEMICAL RESEARCH METHODS Journal of molecular graphics & modelling Pub Date : 2024-07-30 DOI:10.1016/j.jmgm.2024.108837
Thi-Thuy-Duong Pham , Quynh Mai Thai , Pham Nguyen Kim Tuyen , Huong Thi Thu Phung , Son Tung Ngo
{"title":"通过计算发现针对猴痘病毒 A42R 拟蛋白的三肽抑制剂。","authors":"Thi-Thuy-Duong Pham ,&nbsp;Quynh Mai Thai ,&nbsp;Pham Nguyen Kim Tuyen ,&nbsp;Huong Thi Thu Phung ,&nbsp;Son Tung Ngo","doi":"10.1016/j.jmgm.2024.108837","DOIUrl":null,"url":null,"abstract":"<div><p>Monkeypox is an infectious disease caused by the monkeypox virus (MPXV), a member of the Orthopoxvirus genus closely related to smallpox. The structure of the A42R profilin-like protein is the first and only available structure among MPXV proteins. Biochemical studies of A42R were conducted in the 1990s and later work also analyzed the protein's function in viral replication in cells. This study aims to screen tripeptides for their potential inhibition of the A42R profilin-like protein using computational methods, with implications for MPXV therapy. A total of 8000 tripeptides underwent molecular docking simulations, resulting in the identification of 20 compounds exhibiting strong binding affinity to A42R. To validate the docking results, molecular dynamics simulations and free energy perturbation calculations were performed. These analyses revealed two tripeptides with sequences TRP-THR-TRP and TRP-TRP-TRP, which displayed robust binding affinity to A42R. Markedly, electrostatic interactions predominated over van der Waals interactions in the binding process between tripeptides and A42R. Three A42R residues, namely Glu9, Ser12, and Arg38, appear to be pivotal in mediating the interaction between A42R and the tripeptide ligands. Notably, tripeptides containing two or three tryptophan residues demonstrate a pronounced binding affinity, with the tripeptide comprising three tryptophan amino acids showing the highest level of affinity. These findings offer valuable insights for the selection of compounds sharing a similar structure and possessing a high affinity for A42R, potentially capable of inhibiting its enzyme activity. The study highlights a structural advantage and paves the way for the development of targeted therapies against MPXV infections.</p></div>","PeriodicalId":16361,"journal":{"name":"Journal of molecular graphics & modelling","volume":"132 ","pages":"Article 108837"},"PeriodicalIF":2.7000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Computational discovery of tripeptide inhibitors targeting monkeypox virus A42R profilin-like protein\",\"authors\":\"Thi-Thuy-Duong Pham ,&nbsp;Quynh Mai Thai ,&nbsp;Pham Nguyen Kim Tuyen ,&nbsp;Huong Thi Thu Phung ,&nbsp;Son Tung Ngo\",\"doi\":\"10.1016/j.jmgm.2024.108837\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Monkeypox is an infectious disease caused by the monkeypox virus (MPXV), a member of the Orthopoxvirus genus closely related to smallpox. The structure of the A42R profilin-like protein is the first and only available structure among MPXV proteins. Biochemical studies of A42R were conducted in the 1990s and later work also analyzed the protein's function in viral replication in cells. This study aims to screen tripeptides for their potential inhibition of the A42R profilin-like protein using computational methods, with implications for MPXV therapy. A total of 8000 tripeptides underwent molecular docking simulations, resulting in the identification of 20 compounds exhibiting strong binding affinity to A42R. To validate the docking results, molecular dynamics simulations and free energy perturbation calculations were performed. These analyses revealed two tripeptides with sequences TRP-THR-TRP and TRP-TRP-TRP, which displayed robust binding affinity to A42R. Markedly, electrostatic interactions predominated over van der Waals interactions in the binding process between tripeptides and A42R. Three A42R residues, namely Glu9, Ser12, and Arg38, appear to be pivotal in mediating the interaction between A42R and the tripeptide ligands. Notably, tripeptides containing two or three tryptophan residues demonstrate a pronounced binding affinity, with the tripeptide comprising three tryptophan amino acids showing the highest level of affinity. These findings offer valuable insights for the selection of compounds sharing a similar structure and possessing a high affinity for A42R, potentially capable of inhibiting its enzyme activity. The study highlights a structural advantage and paves the way for the development of targeted therapies against MPXV infections.</p></div>\",\"PeriodicalId\":16361,\"journal\":{\"name\":\"Journal of molecular graphics & modelling\",\"volume\":\"132 \",\"pages\":\"Article 108837\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of molecular graphics & modelling\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1093326324001372\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of molecular graphics & modelling","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1093326324001372","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

猴痘是由猴痘病毒(MPXV)引起的一种传染病,MPXV 是与天花密切相关的正痘病毒属成员。A42R 拟蛋白的结构是 MPXV 蛋白中第一个也是唯一一个可用的结构。20 世纪 90 年代对 A42R 进行了生化研究,后来的工作还分析了该蛋白在细胞内病毒复制中的功能。本研究旨在利用计算方法筛选可能抑制 A42R 拟蛋白的三肽,从而为 MPXV 治疗提供参考。共对 8000 个三肽进行了分子对接模拟,最终确定了 20 个与 A42R 具有强结合亲和力的化合物。为了验证对接结果,还进行了分子动力学模拟和自由能扰动计算。这些分析表明,序列为 TRP-THR-TRP 和 TRP-TRP-TRP 的两种三肽与 A42R 具有很强的结合亲和力。在三肽与 A42R 的结合过程中,静电相互作用明显优于范德华相互作用。A42R 的三个残基(即 Glu9、Ser12 和 Arg38)似乎在介导 A42R 与三肽配体之间的相互作用中起着关键作用。值得注意的是,含有两个或三个色氨酸残基的三肽具有明显的结合亲和力,其中由三个色氨酸组成的三肽亲和力最高。这些发现为筛选具有相似结构且对 A42R 具有高亲和力的化合物提供了宝贵的启示,这些化合物有可能抑制 A42R 的酶活性。这项研究凸显了一种结构优势,为开发针对 MPXV 感染的靶向疗法铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Computational discovery of tripeptide inhibitors targeting monkeypox virus A42R profilin-like protein

Monkeypox is an infectious disease caused by the monkeypox virus (MPXV), a member of the Orthopoxvirus genus closely related to smallpox. The structure of the A42R profilin-like protein is the first and only available structure among MPXV proteins. Biochemical studies of A42R were conducted in the 1990s and later work also analyzed the protein's function in viral replication in cells. This study aims to screen tripeptides for their potential inhibition of the A42R profilin-like protein using computational methods, with implications for MPXV therapy. A total of 8000 tripeptides underwent molecular docking simulations, resulting in the identification of 20 compounds exhibiting strong binding affinity to A42R. To validate the docking results, molecular dynamics simulations and free energy perturbation calculations were performed. These analyses revealed two tripeptides with sequences TRP-THR-TRP and TRP-TRP-TRP, which displayed robust binding affinity to A42R. Markedly, electrostatic interactions predominated over van der Waals interactions in the binding process between tripeptides and A42R. Three A42R residues, namely Glu9, Ser12, and Arg38, appear to be pivotal in mediating the interaction between A42R and the tripeptide ligands. Notably, tripeptides containing two or three tryptophan residues demonstrate a pronounced binding affinity, with the tripeptide comprising three tryptophan amino acids showing the highest level of affinity. These findings offer valuable insights for the selection of compounds sharing a similar structure and possessing a high affinity for A42R, potentially capable of inhibiting its enzyme activity. The study highlights a structural advantage and paves the way for the development of targeted therapies against MPXV infections.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of molecular graphics & modelling
Journal of molecular graphics & modelling 生物-计算机:跨学科应用
CiteScore
5.50
自引率
6.90%
发文量
216
审稿时长
35 days
期刊介绍: The Journal of Molecular Graphics and Modelling is devoted to the publication of papers on the uses of computers in theoretical investigations of molecular structure, function, interaction, and design. The scope of the journal includes all aspects of molecular modeling and computational chemistry, including, for instance, the study of molecular shape and properties, molecular simulations, protein and polymer engineering, drug design, materials design, structure-activity and structure-property relationships, database mining, and compound library design. As a primary research journal, JMGM seeks to bring new knowledge to the attention of our readers. As such, submissions to the journal need to not only report results, but must draw conclusions and explore implications of the work presented. Authors are strongly encouraged to bear this in mind when preparing manuscripts. Routine applications of standard modelling approaches, providing only very limited new scientific insight, will not meet our criteria for publication. Reproducibility of reported calculations is an important issue. Wherever possible, we urge authors to enhance their papers with Supplementary Data, for example, in QSAR studies machine-readable versions of molecular datasets or in the development of new force-field parameters versions of the topology and force field parameter files. Routine applications of existing methods that do not lead to genuinely new insight will not be considered.
期刊最新文献
Keto-enol Tautomerism of hydroxy-substituted arenes: Theoretical study and experimental consequences Pathogenic variants in the fibronectin type III domain of leptin receptor: Molecular dynamics simulation and structural analysis Dispersion-corrected DFT calculations and dynamic molecular simulations to investigate conformational stability of Lidocaine towards β-CD and HP-β-CD Recent advancements in mechanical properties of graphene-enhanced polymer nanocomposites: Progress, challenges, and pathways forward Estimating AChE inhibitors from MCE database by machine learning and atomistic calculations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1