哮喘和慢性阻塞性肺疾病患者肺部亚充气状态下的弥散功能受损。

IF 1.9 4区 医学 Q3 PHYSIOLOGY Respiratory Physiology & Neurobiology Pub Date : 2024-08-02 DOI:10.1016/j.resp.2024.104304
Sylvia Verbanck , Mike Hughes
{"title":"哮喘和慢性阻塞性肺疾病患者肺部亚充气状态下的弥散功能受损。","authors":"Sylvia Verbanck ,&nbsp;Mike Hughes","doi":"10.1016/j.resp.2024.104304","DOIUrl":null,"url":null,"abstract":"<div><h3>Introduction</h3><p>Dissolved-phase <sup>129</sup>Xe MRI metrics suggest that gas diffusion may be more compromised at submaximal lung inflation compared to maximal inflation. We hypothesized that this diffusion deficit could be detected by comparing the carbon monoxide transfer coefficient (Kco) at submaximal lung inflation to that measured routinely at total lung capacity (TLC).</p></div><div><h3>Methods</h3><p>Asthma and COPD patients performed carbon monoxide diffusion tests, first at maximal lung inflation for routine Kco and alveolar volume VA and then, at a 30 % reduced inflation (redux; obtaining Kco<sub>redux</sub> and VA<sub>redux</sub>). At both inflations mixing efficiency was determined as VA/TLC and VA<sub>redux</sub>/TLC<sub>redux</sub> to examine a potential effect on Kco<sub>redux</sub>/Kco behavior.</p></div><div><h3>Results</h3><p>In normal subjects (n=36), median Kco<sub>redux</sub>/Kco amounted to 130 [IQR:122–136]% as expected for normal Kco recruitment response. However, 60 % of asthma patients (49/83) and 80 % of COPD patients (44/55) showed reduced Kco recruitment at submaximal inflation (Kco<sub>redux</sub>/Kco&lt;122 %). In the asthma group, with otherwise normal routine Kco, Kco<sub>redux</sub>/Kco was significantly correlated with RV/TLC ratio (r=-0.53;P&lt;0.001), but not with VA/TLC. In COPD patients, all with abnormal routine Kco, abnormal Kco<sub>redux</sub>/Kco response occurred in those patients with lower FEV<sub>1</sub>, higher RV/TLC and lower VA/TLC (P&lt;0.01 for all).</p></div><div><h3>Conclusion</h3><p>Sizeable portions of COPD and asthma patients showed a lack of normal Kco recruitment at submaximal lung inflation, related to high RV/TLC. In asthma, this was the case despite normal Kco at full lung inflation, suggesting that hyperinflation at lung volumes less than TLC affects the carbon monoxide diffusion rate constant by distorting pulmonary capillaries and alveolar–capillary membranes.</p></div>","PeriodicalId":20961,"journal":{"name":"Respiratory Physiology & Neurobiology","volume":"328 ","pages":"Article 104304"},"PeriodicalIF":1.9000,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Impaired diffusion at submaximal lung inflation in asthma and copd patients\",\"authors\":\"Sylvia Verbanck ,&nbsp;Mike Hughes\",\"doi\":\"10.1016/j.resp.2024.104304\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Introduction</h3><p>Dissolved-phase <sup>129</sup>Xe MRI metrics suggest that gas diffusion may be more compromised at submaximal lung inflation compared to maximal inflation. We hypothesized that this diffusion deficit could be detected by comparing the carbon monoxide transfer coefficient (Kco) at submaximal lung inflation to that measured routinely at total lung capacity (TLC).</p></div><div><h3>Methods</h3><p>Asthma and COPD patients performed carbon monoxide diffusion tests, first at maximal lung inflation for routine Kco and alveolar volume VA and then, at a 30 % reduced inflation (redux; obtaining Kco<sub>redux</sub> and VA<sub>redux</sub>). At both inflations mixing efficiency was determined as VA/TLC and VA<sub>redux</sub>/TLC<sub>redux</sub> to examine a potential effect on Kco<sub>redux</sub>/Kco behavior.</p></div><div><h3>Results</h3><p>In normal subjects (n=36), median Kco<sub>redux</sub>/Kco amounted to 130 [IQR:122–136]% as expected for normal Kco recruitment response. However, 60 % of asthma patients (49/83) and 80 % of COPD patients (44/55) showed reduced Kco recruitment at submaximal inflation (Kco<sub>redux</sub>/Kco&lt;122 %). In the asthma group, with otherwise normal routine Kco, Kco<sub>redux</sub>/Kco was significantly correlated with RV/TLC ratio (r=-0.53;P&lt;0.001), but not with VA/TLC. In COPD patients, all with abnormal routine Kco, abnormal Kco<sub>redux</sub>/Kco response occurred in those patients with lower FEV<sub>1</sub>, higher RV/TLC and lower VA/TLC (P&lt;0.01 for all).</p></div><div><h3>Conclusion</h3><p>Sizeable portions of COPD and asthma patients showed a lack of normal Kco recruitment at submaximal lung inflation, related to high RV/TLC. In asthma, this was the case despite normal Kco at full lung inflation, suggesting that hyperinflation at lung volumes less than TLC affects the carbon monoxide diffusion rate constant by distorting pulmonary capillaries and alveolar–capillary membranes.</p></div>\",\"PeriodicalId\":20961,\"journal\":{\"name\":\"Respiratory Physiology & Neurobiology\",\"volume\":\"328 \",\"pages\":\"Article 104304\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-08-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Respiratory Physiology & Neurobiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1569904824000971\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Respiratory Physiology & Neurobiology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1569904824000971","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

简介:溶解相 129Xe MRI 指标表明,与最大充气量相比,气体扩散在亚最大充气量时可能会受到更大影响。我们假设,可以通过比较亚极限肺充气时的一氧化碳传递系数(Kco)和常规测量的总肺活量(TLC)来检测这种扩散缺陷:哮喘和慢性阻塞性肺病患者进行了一氧化碳扩散测试,首先在肺最大充气状态下测量常规 Kco 和肺泡容积 VA,然后在充气量减少 30% 的状态下(redux;获得 Kcoredux 和 VAredux)进行测试。在这两种充气状态下,混合效率分别为 VA/TLC 和 VAredux/TLCredux,以检查对 Kcoredux/Kco 行为的潜在影响:正常受试者(36 人)的 Kcoredux/Kco 中位数为 130 [IQR:122-136]%,符合正常 Kco 招募反应的预期。然而,60% 的哮喘患者(49/83)和 80% 的慢性阻塞性肺病患者(44/55)在亚极限充气时表现出 Kco 招募减少(Kcoredux/Kcoredux/Kco 与 RV/TLC 比率显著相关(r=-0.53;FEV1 较低、RV/TLC 较高和 VA/TLC 较低的患者出现 Predux/Kco 反应):相当一部分慢性阻塞性肺病和哮喘患者在肺部亚充气时缺乏正常的 Kco 招募,这与高 RV/TLC 有关。在哮喘患者中,尽管全肺充气时 Kco 正常,但仍存在这种情况,这表明肺容积小于 TLC 时的过度充气会通过扭曲肺毛细血管和肺泡-毛细血管膜影响一氧化碳扩散速率常数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Impaired diffusion at submaximal lung inflation in asthma and copd patients

Introduction

Dissolved-phase 129Xe MRI metrics suggest that gas diffusion may be more compromised at submaximal lung inflation compared to maximal inflation. We hypothesized that this diffusion deficit could be detected by comparing the carbon monoxide transfer coefficient (Kco) at submaximal lung inflation to that measured routinely at total lung capacity (TLC).

Methods

Asthma and COPD patients performed carbon monoxide diffusion tests, first at maximal lung inflation for routine Kco and alveolar volume VA and then, at a 30 % reduced inflation (redux; obtaining Kcoredux and VAredux). At both inflations mixing efficiency was determined as VA/TLC and VAredux/TLCredux to examine a potential effect on Kcoredux/Kco behavior.

Results

In normal subjects (n=36), median Kcoredux/Kco amounted to 130 [IQR:122–136]% as expected for normal Kco recruitment response. However, 60 % of asthma patients (49/83) and 80 % of COPD patients (44/55) showed reduced Kco recruitment at submaximal inflation (Kcoredux/Kco<122 %). In the asthma group, with otherwise normal routine Kco, Kcoredux/Kco was significantly correlated with RV/TLC ratio (r=-0.53;P<0.001), but not with VA/TLC. In COPD patients, all with abnormal routine Kco, abnormal Kcoredux/Kco response occurred in those patients with lower FEV1, higher RV/TLC and lower VA/TLC (P<0.01 for all).

Conclusion

Sizeable portions of COPD and asthma patients showed a lack of normal Kco recruitment at submaximal lung inflation, related to high RV/TLC. In asthma, this was the case despite normal Kco at full lung inflation, suggesting that hyperinflation at lung volumes less than TLC affects the carbon monoxide diffusion rate constant by distorting pulmonary capillaries and alveolar–capillary membranes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.80
自引率
8.70%
发文量
104
审稿时长
54 days
期刊介绍: Respiratory Physiology & Neurobiology (RESPNB) publishes original articles and invited reviews concerning physiology and pathophysiology of respiration in its broadest sense. Although a special focus is on topics in neurobiology, high quality papers in respiratory molecular and cellular biology are also welcome, as are high-quality papers in traditional areas, such as: -Mechanics of breathing- Gas exchange and acid-base balance- Respiration at rest and exercise- Respiration in unusual conditions, like high or low pressure or changes of temperature, low ambient oxygen- Embryonic and adult respiration- Comparative respiratory physiology. Papers on clinical aspects, original methods, as well as theoretical papers are also considered as long as they foster the understanding of respiratory physiology and pathophysiology.
期刊最新文献
TRPA1 contributes to respiratory depression from tobacco aerosol. THE ACUTE EFFECT OF BILATERAL CATHODIC TRANSCRANIAL DIRECT CURRENT STIMULATION ON RESPIRATORY MUSCLE STRENGTH AND ENDURANCE. Glycolytic metabolism modulation on spinal neuroinflammation and vital functions following cervical spinal cord injury. Impact of microbial diversity on inflammatory cytokines and respiratory pattern measured in whole-body plethysmography in guinea pig models. Editorial Board
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1