Sebastiano Italia , Silvia Vivarelli , Michele Teodoro , Chiara Costa , Concettina Fenga , Federica Giambò
{"title":"农药暴露对正常样本和癌症样本中某些基因表达的影响:确定用于风险评估的预测性生物标志物。","authors":"Sebastiano Italia , Silvia Vivarelli , Michele Teodoro , Chiara Costa , Concettina Fenga , Federica Giambò","doi":"10.1016/j.etap.2024.104524","DOIUrl":null,"url":null,"abstract":"<div><p>Pesticides pivotal in controlling pests, can represent a threat for human health. Regulatory agencies constantly monitor their harmful effects, regulating their use. Several studies support a positive association between long-term exposure to pesticides and chronic pathologies, such as cancer. Geno-toxicological biomonitoring has proven to be valuable to assess genetic risks associated with exposure to pesticides, representing a promising tool to improve preventive measures and identify workers at higher risk. In this study, a differential gene expression analysis of 70 candidate genes deregulated upon pesticide exposure, was performed in 10 GEO human gene expression DataSets. It was found that six genes (PMAIP1, GCLM, CD36, SQSTM1, ABCC3, NR4A2) had significant AUC predictive values. Also, CD36 was upregulated in non-transformed cell samples and healthy workers, but downregulated in cancer cells. Further validation in larger groups of workers will corroborate the importance of the identified candidates as biomarkers of exposure/effect.</p></div>","PeriodicalId":11775,"journal":{"name":"Environmental toxicology and pharmacology","volume":"110 ","pages":"Article 104524"},"PeriodicalIF":4.2000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1382668924001649/pdfft?md5=dfb5c53b35dedbadbf2d605138b3bb02&pid=1-s2.0-S1382668924001649-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Effects of pesticide exposure on the expression of selected genes in normal and cancer samples: Identification of predictive biomarkers for risk assessment\",\"authors\":\"Sebastiano Italia , Silvia Vivarelli , Michele Teodoro , Chiara Costa , Concettina Fenga , Federica Giambò\",\"doi\":\"10.1016/j.etap.2024.104524\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Pesticides pivotal in controlling pests, can represent a threat for human health. Regulatory agencies constantly monitor their harmful effects, regulating their use. Several studies support a positive association between long-term exposure to pesticides and chronic pathologies, such as cancer. Geno-toxicological biomonitoring has proven to be valuable to assess genetic risks associated with exposure to pesticides, representing a promising tool to improve preventive measures and identify workers at higher risk. In this study, a differential gene expression analysis of 70 candidate genes deregulated upon pesticide exposure, was performed in 10 GEO human gene expression DataSets. It was found that six genes (PMAIP1, GCLM, CD36, SQSTM1, ABCC3, NR4A2) had significant AUC predictive values. Also, CD36 was upregulated in non-transformed cell samples and healthy workers, but downregulated in cancer cells. Further validation in larger groups of workers will corroborate the importance of the identified candidates as biomarkers of exposure/effect.</p></div>\",\"PeriodicalId\":11775,\"journal\":{\"name\":\"Environmental toxicology and pharmacology\",\"volume\":\"110 \",\"pages\":\"Article 104524\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1382668924001649/pdfft?md5=dfb5c53b35dedbadbf2d605138b3bb02&pid=1-s2.0-S1382668924001649-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental toxicology and pharmacology\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1382668924001649\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental toxicology and pharmacology","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1382668924001649","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Effects of pesticide exposure on the expression of selected genes in normal and cancer samples: Identification of predictive biomarkers for risk assessment
Pesticides pivotal in controlling pests, can represent a threat for human health. Regulatory agencies constantly monitor their harmful effects, regulating their use. Several studies support a positive association between long-term exposure to pesticides and chronic pathologies, such as cancer. Geno-toxicological biomonitoring has proven to be valuable to assess genetic risks associated with exposure to pesticides, representing a promising tool to improve preventive measures and identify workers at higher risk. In this study, a differential gene expression analysis of 70 candidate genes deregulated upon pesticide exposure, was performed in 10 GEO human gene expression DataSets. It was found that six genes (PMAIP1, GCLM, CD36, SQSTM1, ABCC3, NR4A2) had significant AUC predictive values. Also, CD36 was upregulated in non-transformed cell samples and healthy workers, but downregulated in cancer cells. Further validation in larger groups of workers will corroborate the importance of the identified candidates as biomarkers of exposure/effect.
期刊介绍:
Environmental Toxicology and Pharmacology publishes the results of studies concerning toxic and pharmacological effects of (human and veterinary) drugs and of environmental contaminants in animals and man.
Areas of special interest are: molecular mechanisms of toxicity, biotransformation and toxicokinetics (including toxicokinetic modelling), molecular, biochemical and physiological mechanisms explaining differences in sensitivity between species and individuals, the characterisation of pathophysiological models and mechanisms involved in the development of effects and the identification of biological markers that can be used to study exposure and effects in man and animals.
In addition to full length papers, short communications, full-length reviews and mini-reviews, Environmental Toxicology and Pharmacology will publish in depth assessments of special problem areas. The latter publications may exceed the length of a full length paper three to fourfold. A basic requirement is that the assessments are made under the auspices of international groups of leading experts in the fields concerned. The information examined may either consist of data that were already published, or of new data that were obtained within the framework of collaborative research programmes. Provision is also made for the acceptance of minireviews on (classes of) compounds, toxicities or mechanisms, debating recent advances in rapidly developing fields that fall within the scope of the journal.