Sebastiano Italia , Silvia Vivarelli , Michele Teodoro , Chiara Costa , Concettina Fenga , Federica Giambò
{"title":"农药暴露对正常样本和癌症样本中某些基因表达的影响:确定用于风险评估的预测性生物标志物。","authors":"Sebastiano Italia , Silvia Vivarelli , Michele Teodoro , Chiara Costa , Concettina Fenga , Federica Giambò","doi":"10.1016/j.etap.2024.104524","DOIUrl":null,"url":null,"abstract":"<div><p>Pesticides pivotal in controlling pests, can represent a threat for human health. Regulatory agencies constantly monitor their harmful effects, regulating their use. Several studies support a positive association between long-term exposure to pesticides and chronic pathologies, such as cancer. Geno-toxicological biomonitoring has proven to be valuable to assess genetic risks associated with exposure to pesticides, representing a promising tool to improve preventive measures and identify workers at higher risk. In this study, a differential gene expression analysis of 70 candidate genes deregulated upon pesticide exposure, was performed in 10 GEO human gene expression DataSets. It was found that six genes (PMAIP1, GCLM, CD36, SQSTM1, ABCC3, NR4A2) had significant AUC predictive values. Also, CD36 was upregulated in non-transformed cell samples and healthy workers, but downregulated in cancer cells. Further validation in larger groups of workers will corroborate the importance of the identified candidates as biomarkers of exposure/effect.</p></div>","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1382668924001649/pdfft?md5=dfb5c53b35dedbadbf2d605138b3bb02&pid=1-s2.0-S1382668924001649-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Effects of pesticide exposure on the expression of selected genes in normal and cancer samples: Identification of predictive biomarkers for risk assessment\",\"authors\":\"Sebastiano Italia , Silvia Vivarelli , Michele Teodoro , Chiara Costa , Concettina Fenga , Federica Giambò\",\"doi\":\"10.1016/j.etap.2024.104524\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Pesticides pivotal in controlling pests, can represent a threat for human health. Regulatory agencies constantly monitor their harmful effects, regulating their use. Several studies support a positive association between long-term exposure to pesticides and chronic pathologies, such as cancer. Geno-toxicological biomonitoring has proven to be valuable to assess genetic risks associated with exposure to pesticides, representing a promising tool to improve preventive measures and identify workers at higher risk. In this study, a differential gene expression analysis of 70 candidate genes deregulated upon pesticide exposure, was performed in 10 GEO human gene expression DataSets. It was found that six genes (PMAIP1, GCLM, CD36, SQSTM1, ABCC3, NR4A2) had significant AUC predictive values. Also, CD36 was upregulated in non-transformed cell samples and healthy workers, but downregulated in cancer cells. Further validation in larger groups of workers will corroborate the importance of the identified candidates as biomarkers of exposure/effect.</p></div>\",\"PeriodicalId\":4,\"journal\":{\"name\":\"ACS Applied Energy Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1382668924001649/pdfft?md5=dfb5c53b35dedbadbf2d605138b3bb02&pid=1-s2.0-S1382668924001649-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Energy Materials\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1382668924001649\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1382668924001649","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Effects of pesticide exposure on the expression of selected genes in normal and cancer samples: Identification of predictive biomarkers for risk assessment
Pesticides pivotal in controlling pests, can represent a threat for human health. Regulatory agencies constantly monitor their harmful effects, regulating their use. Several studies support a positive association between long-term exposure to pesticides and chronic pathologies, such as cancer. Geno-toxicological biomonitoring has proven to be valuable to assess genetic risks associated with exposure to pesticides, representing a promising tool to improve preventive measures and identify workers at higher risk. In this study, a differential gene expression analysis of 70 candidate genes deregulated upon pesticide exposure, was performed in 10 GEO human gene expression DataSets. It was found that six genes (PMAIP1, GCLM, CD36, SQSTM1, ABCC3, NR4A2) had significant AUC predictive values. Also, CD36 was upregulated in non-transformed cell samples and healthy workers, but downregulated in cancer cells. Further validation in larger groups of workers will corroborate the importance of the identified candidates as biomarkers of exposure/effect.
期刊介绍:
ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.