在牙髓通路制备过程中利用 SWIR 对牙髓结构进行可视化。

L Benz, K Heck, D Hevisov, D Kugelmann, P-C Tseng, Z Sreij, F Litzenburger, J Waschke, F Schwendicke, A Kienle, R Hickel, K-H Kunzelmann, E Walter
{"title":"在牙髓通路制备过程中利用 SWIR 对牙髓结构进行可视化。","authors":"L Benz, K Heck, D Hevisov, D Kugelmann, P-C Tseng, Z Sreij, F Litzenburger, J Waschke, F Schwendicke, A Kienle, R Hickel, K-H Kunzelmann, E Walter","doi":"10.1177/00220345241262949","DOIUrl":null,"url":null,"abstract":"<p><p>Endodontic access preparation is one of the initial steps in root canal treatments and can be hindered by the obliteration of pulp canals and formation of tertiary dentin. Until now, methods for direct intraoperative visualization of the 3-dimensional anatomy of teeth have been missing. Here, we evaluate the use of shortwave infrared radiation (SWIR) for navigation during stepwise access preparation. Nine teeth (3 anteriors, 3 premolars, and 3 molars) were explanted <i>en bloc</i> with intact periodontium including alveolar bone and mucosa from the upper or lower jaw of human body donors. Analysis was performed at baseline as well as at preparation depths of 5 mm, 7 mm, and 9 mm, respectively. For reflection, SWIR was used at a wavelength of 1,550 nm from the occlusal direction, whereas for transillumination, SWIR was passed through each sample at the marginal gingiva from the buccal as well as oral side at a wavelength of 1,300 nm. Pulpal structures could be identified as darker areas approximately 2 mm before reaching the pulp chamber using SWIR transillumination, although they were indistinguishable under normal circumstances. Furcation areas in molars appeared with higher intensity than areas with canals. The location of pulpal structures was confirmed by superimposition of segmented micro-computed tomography (µCT) images. By radiomic analysis, significant differences between pulpal and parapulpal areas could be detected in image features. With hierarchical cluster analysis, both segments could be confirmed and associated with specific clusters. The local thickness of µCTs was calculated and correlated with SWIR transillumination images, by which a linear dependency of thickness and intensity could be demonstrated. Lastly, by <i>in silico</i> simulations of light propagation, dentin tubules were shown to be a crucial factor for understanding the visibility of the pulp. In conclusion, SWIR transillumination may allow direct clinical live navigation during endodontic access preparation.</p>","PeriodicalId":94075,"journal":{"name":"Journal of dental research","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Visualization of Pulpal Structures by SWIR in Endodontic Access Preparation.\",\"authors\":\"L Benz, K Heck, D Hevisov, D Kugelmann, P-C Tseng, Z Sreij, F Litzenburger, J Waschke, F Schwendicke, A Kienle, R Hickel, K-H Kunzelmann, E Walter\",\"doi\":\"10.1177/00220345241262949\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Endodontic access preparation is one of the initial steps in root canal treatments and can be hindered by the obliteration of pulp canals and formation of tertiary dentin. Until now, methods for direct intraoperative visualization of the 3-dimensional anatomy of teeth have been missing. Here, we evaluate the use of shortwave infrared radiation (SWIR) for navigation during stepwise access preparation. Nine teeth (3 anteriors, 3 premolars, and 3 molars) were explanted <i>en bloc</i> with intact periodontium including alveolar bone and mucosa from the upper or lower jaw of human body donors. Analysis was performed at baseline as well as at preparation depths of 5 mm, 7 mm, and 9 mm, respectively. For reflection, SWIR was used at a wavelength of 1,550 nm from the occlusal direction, whereas for transillumination, SWIR was passed through each sample at the marginal gingiva from the buccal as well as oral side at a wavelength of 1,300 nm. Pulpal structures could be identified as darker areas approximately 2 mm before reaching the pulp chamber using SWIR transillumination, although they were indistinguishable under normal circumstances. Furcation areas in molars appeared with higher intensity than areas with canals. The location of pulpal structures was confirmed by superimposition of segmented micro-computed tomography (µCT) images. By radiomic analysis, significant differences between pulpal and parapulpal areas could be detected in image features. With hierarchical cluster analysis, both segments could be confirmed and associated with specific clusters. The local thickness of µCTs was calculated and correlated with SWIR transillumination images, by which a linear dependency of thickness and intensity could be demonstrated. Lastly, by <i>in silico</i> simulations of light propagation, dentin tubules were shown to be a crucial factor for understanding the visibility of the pulp. In conclusion, SWIR transillumination may allow direct clinical live navigation during endodontic access preparation.</p>\",\"PeriodicalId\":94075,\"journal\":{\"name\":\"Journal of dental research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of dental research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/00220345241262949\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of dental research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/00220345241262949","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

根管通路准备是根管治疗的初始步骤之一,可能会受到牙髓管阻塞和第三牙本质形成的阻碍。到目前为止,还没有术中直接观察牙齿三维解剖结构的方法。在此,我们评估了短波红外线(SWIR)在分步通路准备过程中的应用。我们从人体捐献者的上颌或下颌取出九颗牙齿(3 颗前牙、3 颗前臼齿和 3 颗臼齿),连同完整的牙周膜(包括牙槽骨和粘膜)进行了整体移植。分别在基线以及制备深度为 5 毫米、7 毫米和 9 毫米时进行分析。反射时,使用波长为 1,550 nm 的西南红外光从咬合方向照射;透射时,使用波长为 1,300 nm 的西南红外光从颊侧和口侧穿过每个样本的边缘牙龈。使用西南红外透射光可以在到达牙髓腔前约 2 毫米处发现暗色区域的牙髓结构,尽管在正常情况下它们是无法区分的。磨牙的毛面区域比有牙槽骨的区域强度更高。牙髓结构的位置是通过叠加分割的微型计算机断层扫描(µCT)图像确认的。通过放射学分析,可以发现牙髓区和副牙髓区在图像特征上存在明显差异。通过分层聚类分析,可以确认这两个区段并与特定的聚类相关联。计算了 µCT 的局部厚度,并将其与西南红外透射图像相关联,从而证明了厚度与强度之间的线性关系。最后,通过对光传播进行硅模拟,证明牙本质小管是了解牙髓可见度的关键因素。总之,在牙髓通路准备过程中,SWIR 透射成像技术可以实现直接的临床现场导航。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Visualization of Pulpal Structures by SWIR in Endodontic Access Preparation.

Endodontic access preparation is one of the initial steps in root canal treatments and can be hindered by the obliteration of pulp canals and formation of tertiary dentin. Until now, methods for direct intraoperative visualization of the 3-dimensional anatomy of teeth have been missing. Here, we evaluate the use of shortwave infrared radiation (SWIR) for navigation during stepwise access preparation. Nine teeth (3 anteriors, 3 premolars, and 3 molars) were explanted en bloc with intact periodontium including alveolar bone and mucosa from the upper or lower jaw of human body donors. Analysis was performed at baseline as well as at preparation depths of 5 mm, 7 mm, and 9 mm, respectively. For reflection, SWIR was used at a wavelength of 1,550 nm from the occlusal direction, whereas for transillumination, SWIR was passed through each sample at the marginal gingiva from the buccal as well as oral side at a wavelength of 1,300 nm. Pulpal structures could be identified as darker areas approximately 2 mm before reaching the pulp chamber using SWIR transillumination, although they were indistinguishable under normal circumstances. Furcation areas in molars appeared with higher intensity than areas with canals. The location of pulpal structures was confirmed by superimposition of segmented micro-computed tomography (µCT) images. By radiomic analysis, significant differences between pulpal and parapulpal areas could be detected in image features. With hierarchical cluster analysis, both segments could be confirmed and associated with specific clusters. The local thickness of µCTs was calculated and correlated with SWIR transillumination images, by which a linear dependency of thickness and intensity could be demonstrated. Lastly, by in silico simulations of light propagation, dentin tubules were shown to be a crucial factor for understanding the visibility of the pulp. In conclusion, SWIR transillumination may allow direct clinical live navigation during endodontic access preparation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Oral Health Research in the WHO African Region between 2011 and 2022: A Scoping Review. Advanced Imaging in Dental Research: From Gene Mapping to AI Global Data. A Deep Learning System to Predict Epithelial Dysplasia in Oral Leukoplakia. Nuclear TOP1MT Confers Cisplatin Resistance via Pseudogene in HNSCC. Periodontitis and Diabetes Differentially Affect Inflammation in Obesity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1