二氢吡啶[2,3-d]嘧啶作为多酚氧化酶抑制剂的合理设计、合成和计算研究,提高了其效力。

The protein journal Pub Date : 2024-08-01 Epub Date: 2024-08-04 DOI:10.1007/s10930-024-10220-1
Mustafa Oğuzhan Kaya, Mine Nazan Kerimak-Öner, Tuna Demirci, Ahmad Badreddin Musatat, Oğuzhan Özdemir, Yeşim Kaya, Mustafa Arslan
{"title":"二氢吡啶[2,3-d]嘧啶作为多酚氧化酶抑制剂的合理设计、合成和计算研究,提高了其效力。","authors":"Mustafa Oğuzhan Kaya, Mine Nazan Kerimak-Öner, Tuna Demirci, Ahmad Badreddin Musatat, Oğuzhan Özdemir, Yeşim Kaya, Mustafa Arslan","doi":"10.1007/s10930-024-10220-1","DOIUrl":null,"url":null,"abstract":"<p><p>Polyphenol oxidase (PPO) is an industrially important enzyme associated with browning reactions. In the present study, a set of ten new dihydropyridine [2,3-d] pyrimidines (TD-Hid-1-10) were synthesized and was found to be proven characteristically by <sup>1</sup>H NMR, <sup>13</sup>C NMR, IR, elemental analysis, and assessed as possible PPO inhibitors. PPO was purified from banana using three-phase partitioning, achieving an 18.65-fold purification and 136.47% activity recovery. Enzyme kinetics revealed that the compounds TD-Hid-6 and TD-Hid-7 are to be the most potent inhibitors, exhibiting mixed-type inhibition profile with IC<sub>50</sub> values of 1.14 µM, 5.29 µM respectively against purified PPO enzyme. Electronic structure calculations at the B3LYP/PBE0 level of theories using def-2 SVP, def2-TZVP basis sets with various molecular descriptors characterized the electronic behavior of studied derivatives TD-Hid-1-10. Molecular electrostatic potential (MEP) and reduced density gradient analyses of RDG-NCI provided insights into charge distributions and weak intermolecular interactions. Docking study simulations predicted binding poses within crucial amino acid sequence in the 2y9x enzyme's active site, which is typically similar in sequence to the PPO form is not allowed. Ligands were analysed in terms of binding energies, inhibitor concentrations (mM) and various molecular interactions such as H-bonds, H-carbon, π-carbon, π-sigma, π-sigma, π-π T-shaped, π-π stacked, π-alkyl, Van der Waals and Cu interactions. The lowest binding energy (-7.83 kcal/mol) and the highest inhibitory effect (1.83 mM) were shown by the ligand Td-Hid-6, which forms H-bonds with Met280 and Asn260, exhibits π-sigma interactions with His61 and π-alkyl interactions with Val283. Other ligands also showed different interactions with various amino acids; for example, the Td-Hid-1 ligand formed H-bonds with His244 and showed π-sigma interactions with His244 and Val283.</p>","PeriodicalId":94249,"journal":{"name":"The protein journal","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rational Design, Synthesis, and Computational Investigation of Dihydropyridine [2,3-d] Pyrimidines as Polyphenol Oxidase Inhibitors with Improved Potency.\",\"authors\":\"Mustafa Oğuzhan Kaya, Mine Nazan Kerimak-Öner, Tuna Demirci, Ahmad Badreddin Musatat, Oğuzhan Özdemir, Yeşim Kaya, Mustafa Arslan\",\"doi\":\"10.1007/s10930-024-10220-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Polyphenol oxidase (PPO) is an industrially important enzyme associated with browning reactions. In the present study, a set of ten new dihydropyridine [2,3-d] pyrimidines (TD-Hid-1-10) were synthesized and was found to be proven characteristically by <sup>1</sup>H NMR, <sup>13</sup>C NMR, IR, elemental analysis, and assessed as possible PPO inhibitors. PPO was purified from banana using three-phase partitioning, achieving an 18.65-fold purification and 136.47% activity recovery. Enzyme kinetics revealed that the compounds TD-Hid-6 and TD-Hid-7 are to be the most potent inhibitors, exhibiting mixed-type inhibition profile with IC<sub>50</sub> values of 1.14 µM, 5.29 µM respectively against purified PPO enzyme. Electronic structure calculations at the B3LYP/PBE0 level of theories using def-2 SVP, def2-TZVP basis sets with various molecular descriptors characterized the electronic behavior of studied derivatives TD-Hid-1-10. Molecular electrostatic potential (MEP) and reduced density gradient analyses of RDG-NCI provided insights into charge distributions and weak intermolecular interactions. Docking study simulations predicted binding poses within crucial amino acid sequence in the 2y9x enzyme's active site, which is typically similar in sequence to the PPO form is not allowed. Ligands were analysed in terms of binding energies, inhibitor concentrations (mM) and various molecular interactions such as H-bonds, H-carbon, π-carbon, π-sigma, π-sigma, π-π T-shaped, π-π stacked, π-alkyl, Van der Waals and Cu interactions. The lowest binding energy (-7.83 kcal/mol) and the highest inhibitory effect (1.83 mM) were shown by the ligand Td-Hid-6, which forms H-bonds with Met280 and Asn260, exhibits π-sigma interactions with His61 and π-alkyl interactions with Val283. Other ligands also showed different interactions with various amino acids; for example, the Td-Hid-1 ligand formed H-bonds with His244 and showed π-sigma interactions with His244 and Val283.</p>\",\"PeriodicalId\":94249,\"journal\":{\"name\":\"The protein journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The protein journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s10930-024-10220-1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/8/4 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The protein journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s10930-024-10220-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/4 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

多酚氧化酶(PPO)是一种与褐变反应有关的重要工业酶。本研究合成了一组十个新的二氢吡啶[2,3-d]嘧啶(TD-Hid-1-10),并通过 1H NMR、13C NMR、IR 和元素分析证实了它们的特征,并将其评估为可能的 PPO 抑制剂。利用三相分配法从香蕉中纯化了 PPO,纯化率达 18.65 倍,活性回收率达 136.47%。酶动力学研究表明,TD-Hid-6 和 TD-Hid-7 是最有效的抑制剂,对纯化的 PPO 酶的 IC50 值分别为 1.14 µM、5.29 µM,表现出混合型抑制特征。在 B3LYP/PBE0 理论水平上,使用 def-2 SVP、def2-TZVP 基集和各种分子描述符对所研究的衍生物 TD-Hid-1-10 的电子行为进行了电子结构计算。分子静电位(MEP)和 RDG-NCI 的还原密度梯度分析深入揭示了电荷分布和微弱的分子间相互作用。Docking 研究模拟预测了 2y9x 酶活性位点关键氨基酸序列内的结合位置,该位置通常与 PPO 形式相似,但不允许结合。配体的结合能、抑制剂浓度(毫摩尔)和各种分子相互作用(如 H 键、H-碳、π-碳、π-σ、π-σ、π-π T 形、π-π 堆叠、π-烷基、范德华和 Cu 相互作用)进行了分析。配体 Td-Hid-6 的结合能最低(-7.83 kcal/mol),抑制作用最高(1.83 mM),它与 Met280 和 Asn260 形成 H 键,与 His61 存在π-Σ相互作用,与 Val283 存在π-烷基相互作用。其他配体也显示出与各种氨基酸的不同相互作用;例如,Td-Hid-1 配体与 His244 形成 H 键,并与 His244 和 Val283 显示出 π-sigma 相互作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Rational Design, Synthesis, and Computational Investigation of Dihydropyridine [2,3-d] Pyrimidines as Polyphenol Oxidase Inhibitors with Improved Potency.

Polyphenol oxidase (PPO) is an industrially important enzyme associated with browning reactions. In the present study, a set of ten new dihydropyridine [2,3-d] pyrimidines (TD-Hid-1-10) were synthesized and was found to be proven characteristically by 1H NMR, 13C NMR, IR, elemental analysis, and assessed as possible PPO inhibitors. PPO was purified from banana using three-phase partitioning, achieving an 18.65-fold purification and 136.47% activity recovery. Enzyme kinetics revealed that the compounds TD-Hid-6 and TD-Hid-7 are to be the most potent inhibitors, exhibiting mixed-type inhibition profile with IC50 values of 1.14 µM, 5.29 µM respectively against purified PPO enzyme. Electronic structure calculations at the B3LYP/PBE0 level of theories using def-2 SVP, def2-TZVP basis sets with various molecular descriptors characterized the electronic behavior of studied derivatives TD-Hid-1-10. Molecular electrostatic potential (MEP) and reduced density gradient analyses of RDG-NCI provided insights into charge distributions and weak intermolecular interactions. Docking study simulations predicted binding poses within crucial amino acid sequence in the 2y9x enzyme's active site, which is typically similar in sequence to the PPO form is not allowed. Ligands were analysed in terms of binding energies, inhibitor concentrations (mM) and various molecular interactions such as H-bonds, H-carbon, π-carbon, π-sigma, π-sigma, π-π T-shaped, π-π stacked, π-alkyl, Van der Waals and Cu interactions. The lowest binding energy (-7.83 kcal/mol) and the highest inhibitory effect (1.83 mM) were shown by the ligand Td-Hid-6, which forms H-bonds with Met280 and Asn260, exhibits π-sigma interactions with His61 and π-alkyl interactions with Val283. Other ligands also showed different interactions with various amino acids; for example, the Td-Hid-1 ligand formed H-bonds with His244 and showed π-sigma interactions with His244 and Val283.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Characterization of Cationic Amino Acid Binding Protein from Candidatus Liberibacter Asiaticus and in Silico Study to Identify Potential Inhibitor Molecules. Sulfonylhydrazide Derivatives as Potential Anti-cancer Agents: Synthesis, In Vitro and In Silico Studies. Prediction of Solubility of Proteins in Escherichia coli Based on Functional and Structural Features Using Machine Learning Methods. Exploring Acyl Thiotriazinoindole Based Pharmacophores: Design, Synthesis, and SAR Studies with Molecular Docking and Biological Activity Profiling against Urease, α-amylase, α-glucosidase, Antimicrobial, and Antioxidant Targets. Dual Antimicrobial and Anticancer Activity of Membrane-Active Peptide BP52.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1