Silvia Colabianchi, Francesco Costantino, Nicolò Sabetta
{"title":"评估装配制造中基于大语言模型的数字智能助手","authors":"Silvia Colabianchi, Francesco Costantino, Nicolò Sabetta","doi":"10.1016/j.compind.2024.104129","DOIUrl":null,"url":null,"abstract":"<div><p>The use of Digital Intelligent Assistants (DIAs) in manufacturing aims to enhance performance and reduce cognitive workload. By leveraging the advanced capabilities of Large Language Models (LLMs), the research aims to understand the impact of DIAs on assembly processes, emphasizing human-centric design and operational efficiency. The study is novel in considering the three primary objectives: evaluating the technical robustness of DIAs, assessing their effect on operators' cognitive workload and user experience, and determining the overall performance improvement of the assembly process. Methodologically, the research employs a laboratory experiment, incorporating a controlled setting to meticulously assess the DIA's performance. The experiment used a between-subjects design comparing a group of participants using the DIA against a control group relying on traditional manual methods across a series of assembly tasks. Findings reveal a significant enhancement in the operators' experience, a reduction in cognitive load, and an improvement in the quality of process outputs when the DIA is employed. The article contributes to the study of the DIA's potential and AI integration in manufacturing, offering insights into the design, development, and evaluation of DIAs in industrial settings.</p></div>","PeriodicalId":55219,"journal":{"name":"Computers in Industry","volume":"162 ","pages":"Article 104129"},"PeriodicalIF":8.2000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0166361524000575/pdfft?md5=6b6a9937873da49d70deade15d2919a2&pid=1-s2.0-S0166361524000575-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Assessment of a large language model based digital intelligent assistant in assembly manufacturing\",\"authors\":\"Silvia Colabianchi, Francesco Costantino, Nicolò Sabetta\",\"doi\":\"10.1016/j.compind.2024.104129\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The use of Digital Intelligent Assistants (DIAs) in manufacturing aims to enhance performance and reduce cognitive workload. By leveraging the advanced capabilities of Large Language Models (LLMs), the research aims to understand the impact of DIAs on assembly processes, emphasizing human-centric design and operational efficiency. The study is novel in considering the three primary objectives: evaluating the technical robustness of DIAs, assessing their effect on operators' cognitive workload and user experience, and determining the overall performance improvement of the assembly process. Methodologically, the research employs a laboratory experiment, incorporating a controlled setting to meticulously assess the DIA's performance. The experiment used a between-subjects design comparing a group of participants using the DIA against a control group relying on traditional manual methods across a series of assembly tasks. Findings reveal a significant enhancement in the operators' experience, a reduction in cognitive load, and an improvement in the quality of process outputs when the DIA is employed. The article contributes to the study of the DIA's potential and AI integration in manufacturing, offering insights into the design, development, and evaluation of DIAs in industrial settings.</p></div>\",\"PeriodicalId\":55219,\"journal\":{\"name\":\"Computers in Industry\",\"volume\":\"162 \",\"pages\":\"Article 104129\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2024-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0166361524000575/pdfft?md5=6b6a9937873da49d70deade15d2919a2&pid=1-s2.0-S0166361524000575-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers in Industry\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0166361524000575\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers in Industry","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166361524000575","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
摘要
在制造业中使用数字智能助理(DIAs)旨在提高性能和减少认知工作量。通过利用大型语言模型(LLM)的先进功能,该研究旨在了解 DIA 对装配流程的影响,强调以人为本的设计和操作效率。这项研究的新颖之处在于考虑了三个主要目标:评估 DIA 的技术稳健性、评估其对操作员认知工作量和用户体验的影响,以及确定装配流程的整体性能改进。在方法上,该研究采用了实验室实验,在受控环境中对 DIA 的性能进行细致评估。实验采用主体间设计,在一系列装配任务中,将一组使用 DIA 的参与者与一组依靠传统手工方法的对照组进行比较。研究结果表明,使用 DIA 后,操作员的经验明显增加,认知负荷减少,流程产出质量提高。这篇文章有助于研究 DIA 的潜力和制造业中的人工智能集成,为工业环境中 DIA 的设计、开发和评估提供了见解。
Assessment of a large language model based digital intelligent assistant in assembly manufacturing
The use of Digital Intelligent Assistants (DIAs) in manufacturing aims to enhance performance and reduce cognitive workload. By leveraging the advanced capabilities of Large Language Models (LLMs), the research aims to understand the impact of DIAs on assembly processes, emphasizing human-centric design and operational efficiency. The study is novel in considering the three primary objectives: evaluating the technical robustness of DIAs, assessing their effect on operators' cognitive workload and user experience, and determining the overall performance improvement of the assembly process. Methodologically, the research employs a laboratory experiment, incorporating a controlled setting to meticulously assess the DIA's performance. The experiment used a between-subjects design comparing a group of participants using the DIA against a control group relying on traditional manual methods across a series of assembly tasks. Findings reveal a significant enhancement in the operators' experience, a reduction in cognitive load, and an improvement in the quality of process outputs when the DIA is employed. The article contributes to the study of the DIA's potential and AI integration in manufacturing, offering insights into the design, development, and evaluation of DIAs in industrial settings.
期刊介绍:
The objective of Computers in Industry is to present original, high-quality, application-oriented research papers that:
• Illuminate emerging trends and possibilities in the utilization of Information and Communication Technology in industry;
• Establish connections or integrations across various technology domains within the expansive realm of computer applications for industry;
• Foster connections or integrations across diverse application areas of ICT in industry.